
Thom Badings

Robust Verification of
Stochastic Systems

Guarantees in the
Presence of Uncertainty

Author: Thom Badings
Title: Robust Verification of Stochastic Systems: Guarantees in the Presence

of Uncertainty

Radboud Dissertations Series
ISSN: 2950-2772 (Online); 2950-2780 (Print)

Published by RADBOUD UNIVERSITY PRESS
Postbus 9100, 6500 HA Nijmegen, The Netherlands
www.radbouduniversitypress.nl

Design: Thom Badings
Cover: Thom Badings
Printing: DPN Rikken/Pumbo

ISBN: 9789493296909
DOI: https://doi.org/10.54195/9789493296909
Free download at: www.boekenbestellen.nl/radboud-university-press/dissertations

©2025 Thom Badings

This Ph.D. research has been funded by the Dutch Research Council (NWO) under the
grant PrimaVera (NWA.1160.18.238) and has been carried out under the auspices of the
research school IPA (Institute for Programming research and Algorithmics).

IPA Dissertation Series 2025-03

This is an OpenAccess book published under the terms of Creative Commons Attribution-
Noncommercial-NoDerivatives International license (CC BY-NC-ND 4.0). This license
allows reusers to copy and distribute the material in any medium or format in unadapted
form only, for noncommercial purposes only, and only so long as attribution is given to
the creator, see http://creativecommons.org/licenses/by-nc-nd/4.0/.

www.radbouduniversitypress.nl
https://doi.org/10.54195/9789493296909
www.boekenbestellen.nl/radboud-university-press/dissertations
http://creativecommons.org/licenses/by-nc-nd/4.0/

Robust Verification of Stochastic Systems:
Guarantees in the Presence of Uncertainty

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

donderdag 27 maart 2025
om 16:30 uur precies

door

Thomas Sebastiaan Badings

geboren te Zwolle

Promotoren
Prof. dr. Nils H. Jansen (Ruhr-Universität Bochum, Duitsland)
Prof. dr. Mariëlle I.A. Stoelinga

Manuscriptcommissie
Prof. dr. Frits W. Vaandrager
Prof. dr. Holger Hermanns (Universität des Saarlandes, Duitsland)
Prof. dr. Jan Křetínský (Masarykova univerzita, Tsjechië)
Dr. Frans A. Oliehoek (Technische Universiteit Delft)
Dr. Jana Tůmová (Kungliga Tekniska högskolan, Zweden)

v

Abstract
Verifying that systems are safe and reliable is crucial in today’s world. For example,
we want to prove that an autonomous drone will safely reach its target, or that a
manufacturing system will not break down. Classical algorithms for verifying such
properties often rely on a precise mathematical model of the system, for example, in
the form of a Markov chain or a Markov decision process (MDP). Such Markov models
are probabilistic transition systems and are ubiquitous in many areas, including control
theory, artificial intelligence (AI), formal methods, and operations research.

However, as systems become increasingly complex with more cyber-physical and AI
components, uncertainty about the system’s behavior is inevitable. As a result, transition
probabilities in Markov models are subject to uncertainty, rendering many existing
analysis algorithms inapplicable.

In this thesis, we fill this gap by developing novel verification methods for Markov
models in the presence of uncertainty. To capture this uncertainty, we use parametric
Markov models, where probabilities are described as functions over parameters. We
study two perspectives on rendering verification methods robust against uncertainty:
(1) set-bounded uncertainty, where only the set of possible parameter values is known
and one can be robust in a worst-case sense, and (2) stochastic uncertainty, where the
parameter values are described by a probability distribution and one can be robust in
a probabilistic sense. By combining techniques from formal methods, AI, and control
theory, our contributions span the following general problem settings:
1. We develop robust abstraction techniques for solving control problems for Markov

models with continuous state and action spaces, and with set-bounded uncertain
parameters. Based on the notion of probabilistic simulation relations, we show that
such continuous control problems can be solved by only analyzing a finite-state
abstraction, formalized as an MDP with sets of transition probabilities.

2. We present novel and scalable verification techniques for parametric Markovmodels
with a prior distribution over the parameters. Our approaches are sampling-based,
do not require any assumptions on the parameter distribution, and provide probably
approximately correct (PAC) guarantees on the verification results.

3. We show that parametric models can be used to improve the sample efficiency
of data-driven learning methods. We leverage tools from convex optimization to
perform a sensitivity analysis, where we measure sensitivity in terms of partial
derivatives of the polynomial function that describes a measure of interest.

4. We study continuous-time Markov chains where the initial state must be inferred
from a set of (possibly uncertain) state observations. This setting is particularly
relevant in runtimemonitoring. We compute upper and lower bounds on reachability
probabilities, conditioned on these observations. Our approach is based on a robust
abstraction into an MDP with intervals of transition probabilities.

In conclusion, we develop verification methods that reason over uncertainty without
sacrificing guarantees. While dealing with uncertainty can be computationally expens-
ive, providing such guarantees is crucial for designing safe and reliable systems with
cyber-physical and AI components. The aim of this thesis is to contribute to a better
understanding of dealing with uncertainty in stochastic verification problems.

vii

Samenvatting
Het verifiëren dat systemen veilig en betrouwbaar zijn is cruciaal. We willen bijvoor-
beeld bewijzen dat een autonome drone veilig zijn bestemming bereikt, of dat een
productiemachine niet kapot zal gaan. Klassieke algoritmes voor het verifiëren van
zulke eigenschappen vereisen een exact wiskundig model van het system, bijvoorbeeld
als een Markov chain of een Markov decision process (MDP). Zulke Markov modellen
zijn probabilistische transitiesystemen die in vele gebieden voorkomen, waaronder de
regeltechniek, kunstmatige intelligentie (AI), formele methoden en besliskunde.

Doordat systemen steeds meer cyber-fysieke en AI componenten hebben neemt
hun complexiteit toe. Hierdoor is onzekerheid over het gedrag en de dynamica van
deze systemen onvermijdelijk. Dit betekent dat de transitiekansen in Markov modellen
onzeker zullen zijn, waardoor veel klassieke algoritmes niet toepasbaar zijn.

In deze thesis ontwikkelen we nieuwe verificatiemethodes voor Markov modellen met
onzekerheid. We modelleren onzekerheid met parametrische Markov modellen, waarin
transitiekansen als functies over parameters zijn gedefinieerd. We onderzoeken twee
perspectieven voor het modelleren en robuust analyseren van onzekerheden: (1) set-
begrensde onzekerheid, waarbij alleen de set van mogelijke parameterwaarden bekend is
en een worst-case robuuste analyse mogelijk is, en (2) stochastische onzekerheid, waarbij
de parameterwaarden worden beschreven door een kansverdeling en robuustheid een
probabilistische opvatting heeft. We combineren technieken uit de formele methoden,
AI, en de regeltechniek in de volgende problemstellingen:
1. We ontwikkelen robuuste abstractie-technieken voor planningsproblemen inMarkov

modellen met continue toestands- en actieruimtes, en met set-begrensde onzekere
parameters. We gebruiken de notie van probabilistische simulatierelaties om zulke
problemen op te lossen door enkel een eindige abstractie te analyseren. Deze
abstractie formaliseren we als een MDP met sets van transitiekansen.

2. We presenten nieuwe en schaalbare verificatietechnieken voor parametrische
Markov modellen met een kansverdeling over de parameters. Onze technieken zijn
data-gedreven, vereisen geen aannames op deze kansverdeling, en geven probably
approximately correct (PAC) garanties op de verificatieresultaten.

3. We gebruiken parametrische modellen om de sample efficiëntie van data-gedreven
leermethodes te verbeteren. We gebruiken technieken uit convexe optimalisatie om
sensitiviteitsanalyses te doen, waarbij we de sensitiviteit uitdrukken in termen van
de partiële afgeleiden van de polynomiale functie die het model beschrijft.

4. We onderzoeken continuous-time Markov chains waar de initiële toestand moet
worden afgeleid uit (mogelijk onzekere) observaties. Deze setting is in het bijzon-
der relevant voor systeemmonitoring. We berekenen boven- en ondergrenzen op
analyses, geconditioneerd op de gegeven observaties. Onze methode is gebaseerd
op een robuuste abstractie als een MDP met intervallen van transitiekansen.

In conclusie, we ontwikkelen verificatiemethodes die wiskundige garanties geven
ondanks onzekerheden. Hoewel het geven van zulke garanties rekenintensief kan zijn, is
dit cruciaal voor het ontwerpen van veilige en betrouwbare systemen met cyber-fysieke
en AI componenten. Met deze thesis hopen we bij te dragen aan een beter begrip van
het omgaan met onzekerheid in stochastische verificatieproblemen.

ix

Acknowledgements
I can still remember if it were yesterday that I sent an email to Ingrid, the secretary of
the Software Science Department at Radboud University, asking whether there were
any openings for doing a Ph.D. in Nijmegen. Ingrid forwarded me to Nils, who by luck
was soon going to hire three Ph.D. students. That ended up being Christoph, Marnix,
and me, and it was the start of an amazing 4-year journey.

I can only say that I have been incredibly lucky to have Nils as my Ph.D. advisor.
Nils, you give me so much freedom to explore my academic path. You guided me when
needed, but more often than not, you simply asked what I would like to do the most.
From you, I learned the great attitude of: “If something makes you happier doing your job,
then just do it!” Moreover, your (copyrighted) quote that “uncertainty is inevitable” has
been part of the fundamental basis for my Ph.D. research. By always involving us in
the workshops and events you have organized, you have not just taught me how to do
research, but you have also been my guide into the academic world.

If Nils’ enthusiasm wasn’t enough yet, then I could always still count on Mariëlle.
Mariëlle, you have been a great advisor and supervisor who always managed to make
things exciting. You apply your saying “no risk, no fun” to many different situations,
and (to some extent) that saying is also absolutely true! My Ph.D. project is part of
PrimaVera, a consortium on predictive maintenance that Mariëlle has tirelessly led over
the past years. Being part of the PrimaVera team, I have met many amazing people from
different universities and companies in the Netherlands.

Next, I would like to thank Frits Vaandrager, Holger Hermanns, Jan Křetínský, Frans
Oliehoek, and Jana Tůmová for acting as members of the manuscript committee, and for
providing sharp and valuable feedback on my thesis. Special thanks go out to Matthijs
for reading the introduction of my thesis in an early stage.

All my fellow LAVA-lab colleagues (Dennis, Christoph, Marnix, Thiago, Eline, Merlijn,
Maris, and Wietze), a.k.a. Nils’ paper factory, I thank you for making my Ph.D. journey a
lively experience. Later in my Ph.D., when Nils started his position in Bochum, our group
was expanded with more amazing people (Joshua, Jule, Marcel, Markel, Miriam, Öznur,
and Verena). The same holds for all others in the Software Science Department, with
whom I had the pleasure of having countless important lunch discussions. Sebastian,
not only do we (almost) share a (middle) name, but we also share authorship on several
papers. Matthias, I always enjoyed our collaborations, and I love how you can put
basically anything in perspective by saying it was still more reliable than the German
trains. Also, shoutout to Sebastian and Matthias for being willing to share their thesis
template with me—You absolutely saved me from many frustrating hours of stumbling
around with LATEX templates!

The interaction with many incredible people, both within and outside the Netherlands,
is what made my Ph.D. journey an amazing experience. I don’t think there’s any other
type of job in which people are so passionate about their work and eager to collaborate.
Steve, you were the best possible host during Thiago’s and my trip to Austin, making it
a truly awesome experience (the “chicken shit bingo” must still be the most Texan thing
I’ve ever seen). Licio, I’m writing part of these acknowledgments while sitting in the
Californian sun—You made my visit to Stanford a great trip. You have been a wonderful
collaborator, and I’ve always enjoyed our intense discussions. Similar thanks go to the

x

many people I’ve met over the past years at conferences, workshops, and other events.
I am grateful to the PrimaVera project for sponsoring my Ph.D. research. Special

thanks to my fellow PrimaVera Ph.D.’s and postdocs Bas, Lisandro, Luc, Matthias, Natália,
Núbia, Ragnar, Roel, Thiago, Zaharah, and others from the PrimaVera project who I am
now inevitably forgetting.

Thanks to all my collaborators and co-authors before and during my Ph.D., namely:
Alessandro Abate, Eline Bovy, Murat Cubuktepe, Arnd Hartmanns, Nils Jansen, Se-
bastian Junges, Joost-Pieter Katoen, Wietze Koops, Ahmadreza Marandi, Mahdi Nazeri,
Dave Parker, Hasan Poonawala, Dennis van Putten, Luke Rickard, Licio Romao, Vahab
Rostampour, Jacquelien Scherpen, Thiago Dias Simão, Sadegh Soudjani, Francisco Souza,
Mariëlle Stoelinga, Marnix Suilen, Ufuk Topcu, and Matthias Volk. This is a subtle way
of me saying: Thanks for the great collaborations, and let’s continue to do more!

My first hands-on experience with academic research actually goes back further than
my Ph.D. During my master’s thesis at the University of Groningen, on which I was
supervised by Jacquelien Scherpen and Vahab Rostampour, I got the opportunity to
publish my results. While I was not sure at that point whether I wanted to pursue a
career in academia, I am very sure that the seed for my passion for research was already
planted back then!

Outside of academia, I owe a lot of thanks to all “Hendige Heeren” (Sake, Balazs, Cees,
Colin, Eelco, Herman, Jippe, Stefan, Koen, Roland, Sebastian, and Yorick), who are my
former water polo team from my life as a student in Groningen. We may not see each
other that often anymore, but the events that we do, such as the sailing weekend and
the yearly winter sports, are among the best events of the year. In particular, Herman
and Sake, you’re the best for being my paranymphs (a.k.a. bodyguards) at my defense.
Similar shoutouts go to my friends from high school in Zwolle (Roy, Daan, Gerjan, Jan,
Justin, Mathieu, Menno, Rico, Rutger, Sander, Stephan, and Thomas), with whom I had
many great times and adventures as well.

To my mom (Pauline), dad (Erik), sister (Nienke), and brother (Matthijs), thanks for
the unconditional support, and for always being there for me. It was in 2018 that my
dad defended his Ph.D. at Radboud University. Now, it is up to me to do the same very
soon. Finally, Marjolein, I am so grateful for how amazing, kind, and supportive you are.
Living with someone who has spent the past four years on making pictures, irregularly
traveling across the world to talk to people, and responding to paper reviews on vacation
is not always easiest. I’m thankful that you’ve always supported me, even now I’ve
decided to do a postdoc in Oxford. But in the end, maybe these acknowledgments are
not the best place to express how much you truly mean to me.

Thom Badings
November 15, 2024

Lent, The Netherlands

xi

Contents

1 Introduction 1
1.1 Stochastic Systems . 1
1.2 Verification . 3
1.3 Uncertainty is Inevitable . 5
1.4 Robustness . 8
1.5 Challenges and Contributions . 9
1.6 Overview of Key Techniques . 11
1.7 Navigating This Thesis . 15
1.8 Overview of Publications . 18

I Foundations 21

2 Preliminaries 23
2.1 Basic Notation . 23
2.2 Optimization Problems . 24
2.3 Probability Theory . 25

2.3.1 Probability distributions . 25
2.3.2 Random variables . 26
2.3.3 Stochastic processes . 26

3 A Primer on Markov Decision Processes 29
3.1 Markov Decision Processes . 29

3.1.1 Paths and sets of paths . 31
3.1.2 Schedulers . 31

3.2 Analyzing MDPs . 34
3.2.1 Probabilistic computation tree logic 34
3.2.2 Measures . 35
3.2.3 Value iteration for MDPs . 37

3.3 Robust Markov Decision Processes . 40
3.3.1 Interval MDPs . 41
3.3.2 Nature . 42
3.3.3 Robust measures . 43
3.3.4 Optimal schedulers for RMDPs 44
3.3.5 Connection to other models . 45

Summary . 46

xii Contents

II Discrete-Time Stochastic Systems 47

4 Foundations of DTSSs 49
4.1 Introduction . 49
4.2 Discrete-Time Stochastic Systems . 50

4.2.1 Markov policy . 53
4.2.2 Stochastic kernel . 54

4.3 Reach-Avoid Probability . 54
4.3.1 Computing satisfaction probabilities 55
4.3.2 Extension to PCTL . 56

Summary . 56

5 Probabilistic Simulation Relations 59
5.1 Introduction . 59

5.1.1 Policy evaluation . 60
5.1.2 Optimal control . 60
5.1.3 Lower bound control . 61

5.2 The DTSS Policy Synthesis Problem . 62
5.2.1 Approaches to DTSS policy synthesis 62
5.2.2 Shortcomings of abstraction-based control 63
5.2.3 An overview of our approach 64

5.3 Probabilistic Simulation Relations . 64
5.3.1 Relating reach-avoid specifications 65
5.3.2 Relating DTSSs and MDPs . 66
5.3.3 Comparison to other behavioral relations 68

5.4 Correct-by-Construction Markov Policy Synthesis 69
5.5 DTSS Relations With Robust MDPs . 74

5.5.1 Probabilistic alternating simulation relation 74
5.5.2 Lower bounding satisfaction probabilities 76
5.5.3 Markov policy synthesis with RMDPs 77

Summary . 78

6 Reach-Avoid Control of Linear DTSSs 81
6.1 Linear DTSS . 81

6.1.1 Assumptions . 82
6.1.2 Problem statement . 84

6.2 MDP Abstraction of Linear DTSS . 85
6.2.1 Relation induced by the abstract MDP 89

6.3 Sampling-Based Probability Intervals 90
6.3.1 Bounds for the transition probabilities 91
6.3.2 *The scenario approach . 93
6.3.3 *Proof of Theorem 6.19 . 96
6.3.4 Tightness of probability intervals 99

6.4 Abstraction-Based Control Algorithm 100
6.4.1 Interval MDP abstraction . 100
6.4.2 Solving Problem 6.6 with high probability 102

Contents xiii

6.5 Exploiting Stability for Smaller Abstractions 104
6.5.1 Backward reachable sets . 105
6.5.2 Constructing smaller abstractions 106

6.6 Experimental Evaluation . 107
6.6.1 UAV motion planning . 107
6.6.2 Spacecraft docking . 110

6.7 Related Work . 112
6.8 Discussion . 113
Summary . 114

7 DTSSs With Uncertain Parameters 117
7.1 Parameter Uncertainty in DTSSs . 117

7.1.1 Assumptions . 118
7.1.2 Problem statement . 120
7.1.3 Overview of our abstraction technique 120

7.2 Parameter Robustness in IMDP Abstractions 121
7.2.1 Nominal dynamics model . 121
7.2.2 IMDP abstraction of the nominal model 121
7.2.3 PAC probability intervals . 127

7.3 Abstraction Algorithm . 131
7.3.1 Solving Problem 7.5 with high probability 132

7.4 Experimental Evaluation . 133
7.4.1 Longitudinal drone dynamics 133
7.4.2 Building temperature control 135

7.5 Related Work . 137
7.6 Discussion . 138
Summary . 138

III Parametric Markov Decision Processes 141

8 Foundations of Parametric MDPs 143
8.1 Introduction . 143
8.2 Parametric MDPs . 144

8.2.1 Parameter instantiation . 145
8.3 Verifying Parametric MDPs . 146

8.3.1 Solution function . 146
8.3.2 Parameter synthesis . 148

8.4 Challenges . 149
Summary . 150

9 The Scenario Approach for Parametric MDPs 151
9.1 Introduction . 151
9.2 Motivating Example . 152
9.3 Problem Statement . 153
9.4 Bounding the Satisfaction Probability 155

9.4.1 Chance-constrained problem 155

xiv Contents

9.4.2 Scenario problem . 156
9.4.3 Sample complexity . 159

9.5 Improving Bounds by Discarding Samples 159
9.5.1 Scenario problem with discarded samples 160
9.5.2 Problem 9.6 solved . 161

9.6 Experimental Evaluation . 163
9.6.1 UAV Motion Planning . 164
9.6.2 Parameter Synthesis Benchmarks 166

9.7 Discussion . 169
Summary . 170

10 Sensitivity Analysis for Parametric Markov Chains 171
10.1 Introduction . 171
10.2 Overview . 173
10.3 Problem Statement . 175

10.3.1 Parametric robust Markov chains 176
10.3.2 Problem statement . 178

10.4 Differentiating Solution Functions for pMCs 178
10.4.1 Computing derivatives explicitly 179
10.4.2 Computing : highest derivatives 179

10.5 Differentiating Solution Functions for pRMCs 181
10.5.1 Computing derivatives via pMCs 182
10.5.2 Computing derivatives explicitly 183
10.5.3 Computing : highest derivatives 185

10.6 Numerical Experiments . 186
10.7 Related Work . 191
10.8 Discussion . 192
Summary . 193

IV Continuous-Time Markov Chains 195

11 Foundations of CTMCs 197
11.1 Introduction . 197
11.2 Continuous-Time Markov Chains . 198
11.3 Verifying CTMCs . 201

11.3.1 Continuous stochastic logic . 201
11.3.2 Measures . 203
11.3.3 Algorithms . 204

11.4 Parametric Continuous-Time Markov Chains 205
11.4.1 Parameter instantiation . 205
11.4.2 Verifying pCTMCs . 206

11.5 Challenges . 207
Summary . 208

12 CTMCs With Uncertain Rates 209
12.1 Introduction . 209

Contents xv

12.2 CTMCs With Uncertain Rates . 211
12.2.1 Measures and solution functions 212
12.2.2 Problem statement . 212
12.2.3 Illustrative example . 214
12.2.4 Our approach . 215

12.3 Precise Sampling-Based Prediction Regions 216
12.3.1 Constructing prediction regions 216
12.3.2 Bounding the containment probability 219
12.3.3 Algorithm for computing prediction regions 221

12.4 Imprecise Sampling-Based Prediction Regions 222
12.4.1 Prediction regions on imprecise solutions 223
12.4.2 *Proof of Theorem 12.21 . 224
12.4.3 Computing the complexity . 226
12.4.4 Solution refinement scheme . 227

12.5 Batch Verification for CTMCs . 227
12.6 Numerical Experiments . 228

12.6.1 Converting pCTMCs into upCTMCs 229
12.6.2 Applicability . 230
12.6.3 Scalability . 232
12.6.4 Comparison to baselines . 232

12.7 Related Work . 233
Summary . 234

13 CTMCs With Imprecisely Timed Observations 235
13.1 Introduction . 235
13.2 The CTMC Monitoring Problem . 236

13.2.1 Problem statement . 238
13.2.2 Our approach . 239

13.3 Conditional Reachability With Imprecise Evidence 240
13.3.1 Unfolding the CTMC into an MDP 240
13.3.2 Computing conditional probabilities in MDPs 242
13.3.3 Computing evidence probability 243

13.4 Abstraction of Conditioned MDPs . 244
13.4.1 Abstracting evidence times . 245
13.4.2 Abstraction refinement . 247

13.5 Bounding the Conditional Reachability 248
13.6 Numerical Experiments . 249

13.6.1 Feasibility . 250
13.6.2 Scalability . 251

13.7 Related Work . 252
13.8 *Proofs . 253

13.8.1 Proof of Theorem 13.11 . 253
13.8.2 Proof of Theorem 13.17 . 256

13.9 Discussion . 256
Summary . 257

xvi Contents

V Outlook 259

14 Tool Support 261
14.1 Probabilistic model checkers . 261
14.2 DynAbs . 261
14.3 Scenario Approach for pMDPs . 262
14.4 Differentiation of pRMCs . 263
14.5 SLURF . 263
14.6 Conditional Reachability in CTMCs . 264

15 Conclusion and Future Work 265
15.1 Summary of Contributions . 265
15.2 A Guide to Robust Verification Under Uncertainty 267
15.3 Limitations, Challenges, and Perspectives 268

15.3.1 Combining learning and verification 269
15.3.2 Integration with reinforcement learning 269
15.3.3 Partial observability . 270
15.3.4 Exploiting structure in AI . 270
15.3.5 Continuous-time models with nondeterminism 271
15.3.6 Mature tool support . 271

15.4 Final Remarks . 271

VI Back Matter 273

A Bibliography 275

B Index 307

C Research Data Management 309

D About the Author 311

1
1

1 Introduction

Motivation | Making predictions about complex systems is at the core of many
decision-making problems. With the rise of artificial intelligence (AI), more and more
of the predictions involved in these decision-making problems are automated and
autonomous [RN10; ABRD+20]. For example, we want to predict whether an autonomous
drone will safely reach its destination [GKM10], whether a manufacturing system
will break down within the next month [TBBB+20; Mob02], whether a warehouse
inventory will not run empty [GMT14], or whether a financial portfolio will yield a
profit [CBSN+16]. Most of these problems are of a sequential nature, meaning that we
need to repetitively make predictions and decisions that depend on each other. To make
such predictions accurately, we need to create mathematical models that describe how
systems behave. However, accurately modeling systems at the right level of abstraction
is highly challenging [BK08], and no model will ever capture the behavior of the system
it represents exactly. As the British statistician George E. P. Box once said: “All models
are wrong, but some are useful” [Box76]. In this thesis, we postulate that eliminating
all uncertainty from a model is generally impossible. Instead, we need to embrace
uncertainty in mathematical models and develop methods that rigorously account for it.

Outline | This thesis is about analyzing mathematical models that are subject to uncer-
tainty. In this introductory chapter, we discuss the motivation, scope, and contributions
of the thesis. In Sect. 1.1, we introduce stochastic systems, and in particular Markov
models, as the main models that we study. Then, in Sect. 1.2, we describe common
questions we can ask about the behavior of a Markov model. In Sect. 1.3, we discuss
what we mean by uncertainty and how to incorporate it into Markov models. Thereafter,
in Sect. 1.4, we introduce the concept of robustness in analyzing models. In Sect. 1.5, we
present the main research goals of this thesis, and in Sect. 1.6, we give an overview of
some of the key techniques we use to achieve these goals. Finally, we present a reading
guide for this thesis in Sect. 1.7 and list the origins of each chapter in Sect. 1.8.

1.1 Stochastic Systems
Mathematical modeling classically assumes that the current status of a system can be
described by a set of variables, jointly called the state of the system. In our models, we
wish to capture how the state of the system changes over time. As a simple example,
consider an autonomous delivery drone flying straight towards a target at a constant
speed of 100 km/h. In this simplified example, the state of the drone is described by
just one variable, namely the total distance traveled. Using the laws of physics, we can
derive a model that describes how the distance traveled changes over time, as illustrated
by Fig. 1.1a. Using this model, we can, for example, analyze the distance the drone
travels in one hour (which is, not surprisingly, 100 km).

2 1 Introduction

0 km 100 km

(a) Deterministic model.

0 km 100 km

Wind

(b) Stochastic model.

Figure 1.1: Simplified model of a drone flying in a straight line. In the left plot, the model
is deterministic, so the distance traveled after 30 minutes is precisely known
(green dot). In the right plot, the model is stochastic, so the distance traveled
after 30 minutes is given as a probability distribution (green area).

Stochasticity | What if some variables influencing the drone’s behavior depend on
random events and arestochasti-

city
stochastic? A stochastic variable is one whose value is not

deterministic but instead described by a probability distribution. For example, suppose
that the wind acts as a disturbance on the speed of the drone, thus affecting the distance
traveled within an hour. If each value for the wind speed occurs with a particular
probability (for example, weak, medium, and strong wind all occurring with probability
1/3), then we can use these probabilities to derive a probability distribution over traveled
distances. In practice, these likelihoods can, for example, be derived from historical
weather data [WW99; PK08]. As a result, our model becomes a so-calledstochastic

process
stochastic process,

and each time we simulate the model, we may obtain a different distance traveled in an
hour. This idea is illustrated by Fig. 1.1b.

Markov models | Slightly more formally, the mathematical model for the drone with
stochastic wind can be formalized as a Markov model. A Markov model is a particular
type of stochastic process where the future evolution of the state only depends on the
current state, and not on the previous states (also known as theMarkov property [Put94]).
Why is this such a nice property to have? Because when analyzing a Markov model, we
only have to look at the current state of the system and not at all the previous states in
which the system has been.

Markov models appear in various areas, including control theory [Åst12], operations
research [Dav18], artificial intelligence [RN10], systems biology [All10], and many more.
Well-known examples of Markov models that we study in this thesis are Markov chains,
Markov decision processes (MDPs), and dynamical control systems. The following
example is the first instance of a Markov model—namely a discrete-time Markov chain
(DTMC)—that we will encounter in this thesis.

Example 1.1 (Hello, Markov chain!) We simplify the drone example even fur-
ther by discretizing time into steps of 30 minutes. Suppose that if the wind is weak,
the drone travels 55 km per 30minutes. Similarly, the travel distance per 30minutes
is 50 km for medium wind and 45 km for strong wind. Assuming the same probabil-
istic model for the wind as above (namely that weak, medium, and strong wind all
occur with probability 1/3), we can model the evolution of the cumulative distance
traveled. Specifically, starting from an initial distance of 0 km, after 30 minutes
the drone has traveled either 45, 50, or 55 km, each with probability 1/3. After 60

1
1.2 Verification 3

1/3

1/3
1/3

1/3

1/3
1/3

1/3
1/3
1/3

1/3
1/3

1/3

0 km 50 km

45 km

55 km

100 km

95 km

90 km

105 km

110 km

Figure 1.2: Discrete-time Markov chain for the distance traveled by the drone. Each
box is a possible state (the total distance traveled), each edge represents a
time duration of 30 minutes, and the numbers on the edges represent the
probabilities for transitions between states to occur.

minutes, the drone has traveled 90, 95, 100, 105, or 110 km, but now the probabilities
are no longer uniform. This model is depicted in Fig. 1.2 and is a simple example
of a (discrete-time) Markov chain—a type of Markov model we formally define in
Chapter 3. Loosely speaking, this Markov chain consists of:

• a set of states (= {0, 45, 50, 55, 90, 95, 100, 105, 110}, each of which represents a
total distance traveled,

• an initial state B� = 0, and
• a transition function, which describes the probability of transitioning between
any two states (visualized by the numbers on the edges in Fig. 1.2).

Action choices | Often, Markov models describe controllable elements present in the
underlying system. A controllable element in the drone example can be that a human
at a control center can accelerate or decelerate the drone, thus influencing the drone’s
behavior. These controllable elements are modeled as actions (or control inputs) and
render the Markov model nondeterministic. The best-known example of a Markov model
with nondeterminism is the Markov decision process (MDP). Nondeterminism means
that the action choices are not determined by the model itself, but by an external decision
rule called the policy (also called controller or scheduler).

1.2 Verification
Research in areas such as probabilistic model checking, operations research, and control
theory has led to the development of a wealth of approaches for analyzing Markov
models. These approaches can roughly be divided into two categories. First, qualitative
verification considers the question: “Does a system satisfy a certain set of requirements?”
On the other hand, quantitative verification asks: “How well does a system satisfy a
certain set of requirements?” Let us discuss both types of verification in more detail.

4 1 Introduction

Quantitative verification

Model Objective

System Requirements

Measure Optimal policy
+ measure

Evaluation Synthesis

Figure 1.3: Ingredients of the two types of quantitative verification problems, namely
evaluation and synthesis problems.

Qualitative verification | A classical qualitative verification problem has two in-
gredients: a Markovmodel representing an underlying system, and a logical specification
representing the requirements for this system [BK08]. The qualitative verification (also
called model checking) problem is then to check whether the model satisfies the spe-
cification. This problem leads to a yes/no answer and is thus of a qualitative nature. For
instance, for the Markov chain from Example 1.1, we can consider the specification: “The
distance traveled within one hour never exceeds 110 km.” This specification is satisfied as
the maximum distance traveled is precisely 110 km. We can also pose a probabilistic
variant of this specification, such as “with a probability of at least 0.9, the distance traveled
within one hour is at least 100 km.” This specification is not satisfied: The probability
of traveling 90 km is 1

3 ·
1
3 = 1

9 , and the probability of traveling 95 km is 1
3 ·

1
3 · 2 = 2

9 ,
so already with probability 1

3 , the distance traveled is less than 100 km. Algorithms for
solving qualitative verification problems essentially explore all possible states of the
model in a brute-force manner. In this way, we can show that a given system formally
satisfies the modeled system requirements.

Quantitative verification | Often, we do not just care about whether a set of require-
ments is satisfied, but we also care about to what extent a specific set of requirements (or
rather, a quantitative objective) is satisfied. For example, rather than asking whether the
distance traveled never exceeds 110 km, we may ask what the expected travel distance
within one hour actually is. This leads to a quantitative verification problem, where the
answer is a number rather than a yes/no statement. Depending on whether or not the
Markov model has controllable elements, we roughly distinguish between the two types
of quantitative verification problems also shown in Fig. 1.3:

• Evaluation: If the Markov model has no controllable elements, then the quantitat-
ive verification problem becomes anevaluation

problem
evaluation problem. Intuitively, we evaluate

the quantitative objective on the Markov model, resulting in a concrete number.
• Synthesis: If the Markov model has controllable elements, we obtain a so-called

synthesis
problem

synthesis problem. A typical synthesis problem is to determine what policy should

1
1.3 Uncertainty is Inevitable 5

be used, such that the quantitative objective is maximized (or minimized). Syn-
thesis problems are analogous to control problems (in control theory) or planning
problems (in AI and operations research).

In this thesis, we study quantitative verification problems for Markov
models, focusing on both evaluation and synthesis problems.

1.3 Uncertainty is Inevitable
Ultimately, we want the solution to a verification problem to perform well on the actual
system that the Markov model represents. Needless to say, this performance depends
on how well the Markov model represents the underlying system. Unfortunately, as
systems become increasingly more complex, it becomes harder to model them accurately.
As a result, eliminating all uncertainty about the behavior of the underlying system is
practically impossible. Instead, we need to develop methods that explicitly capture and
rigorously account for uncertainty in models.

However, the above-mentioned verification approaches for Markov models classically
assume that the model is precisely specified, without any uncertainty. For example,
computing the probability that the travel time is at least 100 km requires knowing the
exact transition probabilities of the Markov chain. This issue raises a fundamental
research challenge that forms the motivation for this thesis:

How can we analyze Markov models that are subject to uncertainty?

What is uncertainty? | Before discussing how we can analyze models subject to
uncertainty, we first need to define what we mean by uncertainty. Because Markov
models are stochastic by definition, simulating them multiple times will lead to possibly
different outcomes (which we call executions). For example, simulating the Markov
chain from Example 1.1 can lead to the execution (0 km, 45 km, 95 km), but also to
(0 km, 50 km, 105 km). Thus, we can say that the execution of a Markov model is uncer-
tain. However, does this also mean that the Markov model itself is uncertain?

We argue that a stochastic model is not the same as an uncertain model. For example,
the execution of the Markov chain in Fig. 1.2 is stochastic, but the model itself is not
uncertain, as each of the transition probabilities of 1/3 is precisely known. Thus, we
distinguish between uncertainty about the execution of a model and uncertainty about
the model itself. For example, uncertainty about the execution of a model can be caused
by uncertainty in:

• the current position of the drone (for example, due to sensor imprecision), or
• the future position of the drone (for example, due to the stochastic wind).

On the other hand, uncertainty about a Markov model includes uncertainty in:
• the probability for each wind speed (for example, due to limited weather data), or
• the physical parameters of the drone influencing the dynamics (for example, the
mass of the drone, its drag coefficient, and so on).

6 1 Introduction

Our focus in this thesis is mainly on dealing with uncertainty at the level of the model.

In this thesis, we primarily consider uncertainty about the transition prob-
abilities of Markov models, and sometimes also about other elements of the
model, such as the initial state.

Howdowemodel uncertainty? | Now that we have definedwhat wemean by uncer-
tainty, we can discuss how to incorporate uncertainty into Markov models. The general
idea is to replace elements of the Markov model that are uncertain with parameters that
can take on different values, as illustrated by the next example.

Example 1.2 (Parametric model) In the drone example, we assumed that the
probability for each wind speed to occur is 1/3. However, since we assumed that
these weather conditions are approximated from historical weather data, these
probabilities are, realistically speaking, only estimates. To acknowledge that the
true probabilities may differ from our estimates, we can replace the precise transition
probabilities of 1/3 in Fig. 1.2 with parameters that can take on different values.
Doing so results in the model depicted in Fig. 1.4a, which is a so-called parametric
Markov chain. The parameter G is the probability of strong wind, ~ is the probability
of weak wind, and thus, the probability of medium wind is automatically determined
as 1 − G − ~ (as probabilities need to sum to one).

G

1 − G − ~

~

G

1 − G − ~

~

G

1 − G − ~

~

G

1 − G − ~

~

0 km 50 km

45 km

55 km

100 km

95 km

90 km

105 km

110 km

(a) Parametric Markov chain for the drone example.

0 0
.2

0
.4

0
.6

0
.8

10
0.2
0.4
0.6
0.8
1

G

~

(b) Set-bounded uncertainty in
transition probabilities.

0

1

G ~

(c) Stochastic uncertainty in
transition probabilities.

Figure 1.4: Capturing uncertainty about the probabilities for each wind speed in the
drone example by introducing two parameters G and~. We can either consider
the parameters (G,~) to be contained in the set in (b) or be drawn according
to the distribution in (c).

1
1.3 Uncertainty is Inevitable 7

Introducing parameters in a Markov model allows us to distinguish between two
flavors when it comes to modeling uncertainty:
1. Set-bounded uncertainty: The first option is to consider all possible values the

uncertain element can take, but without assigning likelihoods to each possible
value. We achieve this by constraining each of the parameters to a set of possible
values. We call the set of all allowed values for the parameters the uncertainty

set
uncertainty set.

This perspective leads to a set of possible models but without likelihoods for each
model in this set. In fact, this set of models is a simple example of a robust Markov
chain; a type of Markov model we formally define in Chapter 3.

2. Stochastic uncertainty: The second option is to consider a probability distribution
over the values of the parameter modeling the uncertainty. We achieve this by
assigning a probability distribution (such as a normal distribution or a uniform
distribution) to the parameters introduced in the Markov model. This perspective
leads to a distribution over possible models, i.e., a set of possible models together
with a likelihood for each model in this set. This type of model, which we call an
uncertain parametric Markov chain, is central to Chapter 9 of this thesis.

The set-bounded perspective can especially be useful to model parameters that can
be controlled. By contrast, in the stochastic perspective, the parameter values are purely
governed by the distribution. Let us illustrate both perspectives on uncertainty with the
following example for the parametric Markov chain from Fig. 1.4a.

Example 1.3 (Modeling uncertainty) Using the set-bounded perspective, we can
define the set of possible values (that is, the uncertainty set) for the parameters (G,~)
shown in Fig. 1.4b. In this example, G (the probability of strong wind) is at least
0.2 and at most 0.5, such that 0.2 ≤ G ≤ 0.5. Similarly, ~ (the probability of weak
wind) is constrained to 0.15 ≤ ~ ≤ 0.4. Setting a value for G and ~ automatically
determines the probability of medium wind as 1 − G − ~.
By contrast, using the stochastic perspective, we define a probability distribution
over possible values for the parameters (G,~), as shown in Fig. 1.4c. In this example,
the parameters are normally distributed. Thus, parameter values close to the mean
of this distribution are more likely to occur, but other values are still possible.

We study both the set-bounded and stochastic perspectives on uncertainty. As we will
see, both of these perspectives enable a different perspective on decision-making.

Where does uncertainty come from? | A popular classification of uncertainty
is to distinguish between aleatoric and epistemic uncertainty [FÜ11; Sul15; CSKG22].
Aleatoric uncertainty is caused by randomness, whereas epistemic uncertainty is caused
by a lack of knowledge of, for example, system parameters [Smi14]. While aleatoric is
irreducible, epistemic uncertainty is reducible by collecting more data.

We argue that uncertainty classification (aleatoric vs. epistemic) is largely independ-
ent of how to model the uncertainty (set-bounded vs. stochastic). That is, aleatoric
and epistemic uncertainty can both be modeled as either set-bounded or stochastic
uncertainty in a Markov model. In this thesis, we are more interested in how to model
and deal with uncertainty in Markov models, than in the source of the uncertainty. Thus,
we do not further investigate aleatoric versus epistemic uncertainty.

8 1 Introduction

1.4 Robustness
Now we have defined what uncertainty is and how to capture it in Markov models, we
can discuss how to actually deal with the uncertainty. In general, we want to analyze
the behavior of a Markov model with uncertainty, such that the analysis outcome is
robust against different outcomes of the uncertainty. The term “robustness” has been used
a lot in the literature on control theory [ZD98], operations research [BGN09; BH22],
and artificial intelligence [Die17; Mar20]. Informally, a robust solution does not just
perform well under a single scenario, but under a set of different scenarios. As we
will see next, robustness against set-bounded and stochastic uncertainty both have a
different interpretation.

Robustness for set-bounded uncertainty | Generally, a solution to a problem is
robust (against a particular source of set-bounded uncertainty) if that solution performs
properly for all possible outcomes of the uncertainty. For example, in robust optimiza-
tion [BH22; BGN09], the idea is to constrain certain parameters to a compact set (called
an uncertainty set) and compute a solution to the optimization problem that is feasible
for all values of these parameters in the uncertainty set. This perspective is similar to the
setting in Fig. 1.4, where we constrained the parameters (G,~) of the Markov chain to
the set in Fig. 1.4b. For each possible value of the parameters (G,~), we could compute
the average distance traveled within one hour. A robust verification problem is then to
compute the minimum (or maximum) average distance traveled over all possible values
of (G,~) in the uncertainty set.

Example 1.4 (Robustness to set-bounded uncertainty) We again consider
Fig. 1.4 with the set-bounded uncertainty in (G,~) described by the set in Fig. 1.4b.
In this example, we have that 0.2 ≤ G ≤ 0.5 and 0.15 ≤ ~ ≤ 0.4 (and thus, we
implicitly have that 0.1 ≤ 1 − G − ~ ≤ 0.65). We ask the question: “What is the
minimum average distance traveled within one hour, over all possible values of (G,~)
in the uncertainty set?” This minimum average distance is attained when we choose
G as high as possible (which is 0.5) and ~ as low as possible (which is 0.15), which
automatically means that 1 − G − ~ is 0.35. For these parameter values, we find
that the minimum average distance traveled is 96.5 km, which is computed as the
weighted average of the distances (weighted by their probabilities):

90 · (0.5 · 0.5) + 95 · (0.5 · 0.35 + 0.35 · 0.5)
+ 100 · (0.5 · 0.15 + 0.35 · 0.35 + 0.15 · 0.5)
+ 105 · (0.35 · 0.15 + 0.15 · 0.35) + 110 · (0.15 · 0.15) = 96.5.

This answer of 96.5 km is robust against the set-bounded uncertainty: No matter
what values for the parameters (G,~) we choose within their allowed set, the average
distance traveled will always be at least 96.5 km.

Robustness for stochastic uncertainty | For the case of stochastic uncertainty, we
need to incorporate the likelihood of each possible realization of the uncertainty. Rather
than being robust against all possible values of the uncertainty, we want to be robust

1
1.5 Challenges and Contributions 9

against a set of values of the uncertainty that occur with a certain probability, such as
99%, as illustrated by the next example.

Example 1.5 (Robustness to stochastic uncertainty) The distribution over the
parameters (G,~) shown in Fig. 1.4c consists of two independent normal distributions
for G and~.a Suppose the distribution for G has amean of 0.4 and a standard deviation
of 0.1, and the distribution for ~ has a mean of 0.2 and a standard deviation of 0.05.
We want to compute the minimum average distance traveled, robust against 99%
probability mass of the joint distribution over the parameters (G,~). We can obtain
a solution to this problem in two steps. First, we compute a set that, with probability
0.99, contains the values for the parameters (G,~) when sampled from the joint
distribution. Since G and ~ are independently distributed, we can compute a set
with probability mass of

√
0.99 ≈ 0.995 for both parameters, and combine them to

obtain a box set similar to the one in Fig. 1.4b. Second, once we have obtained this
set, we can proceed as in Example 1.4.
aIn fact, the distributions are truncated at 0 and 1 to avoid probabilities that are impossible.

In general, the set-bounded perspective leads to more conservative solutions than the
stochastic perspective. Thus, the set-bounded perspective is typically more appropriate
for safety-critical settings, where little or no risk is acceptable, whereas the stochastic
perspective is better suited for settings where less conservative solutions are preferred.
However, computing the set that contains a certain probability mass of the distribution
over parameters is often challenging, especially because this set is not unique. In
Example 1.5, we can either determine the set by taking the 99% probability mass around
the mean of the distribution, but we can also take an asymmetric approach and instead
shift the set to one of the tails. Thus, which of the two perspectives is most appropriate
depends on the specific problem at hand.

1.5 Challenges and Contributions
The previous examples about uncertainty and robustness in Markov models help to
illustrate the problem but are still very simplistic. In more realistic applications, models
can consist of millions or even infinitely many states and actions. Moreover, sets and
distributions over uncertain parameters can be very complex and high-dimensional, or
may not even be known at all. In such cases, classical algorithms for the quantitative
verification of Markov models are no longer applicable. Thus, the overall research goal
of this thesis is as follows.

The goal of this thesis is to develop novel methods for quantitative veri-
fication of Markov models with uncertainty, which can be used to provide
rigorous guarantees that are robust against the model’s uncertainty.

We now break down this overall research goal into four key challenges in robust
decision-making under uncertainty for Markov models. Thereafter, we discuss how we
aim to address each challenge in this thesis.

10 1 Introduction

Challenge 1: Robust policy synthesis for uncertain Markov models with
continuous state and action spaces (Part II of this thesis).

Classical model checking algorithms rely on exhaustively exploring all states of
a Markov model and are thus restricted to models with finitely many states and
actions. However, dealing with real-world physical systems requires models with
continuous state and action spaces. While the field of stochastic control deals
with such continuous models, these approaches can typically only handle simple
specifications of, for example, stability and convergence. More realistic applications
often require more complex specifications, which reason over the temporal evolution
of the system. Furthermore, existing approaches for continuous-state/action models
often assume that the model is precisely known, without any uncertainty. Thus,
there is a lack of approaches for robust control in uncertain Markov models with
continuous state and action spaces, and with more complex specifications.

We address this first challenge for a particular class of continuous-state/action Markov
models, called discrete-time stochastic systems (DTSSs). We focus on objectives that go
beyond the simple tasks usually considered in control theory, such as stability and
convergence. Instead, we consider richer objectives that are formalized in so-called
temporal logics [Pnu77]. We, in particular, focus on reach-avoid control tasks, where
the goal is to reach a set of target states (within a given time horizon) while always
avoiding a set of unsafe states. As our first contribution, we develop a novel framework
for computing policies for DTSSs that provably satisfy complex temporal specifications,
and that are robust against set-bounded parameter uncertainty.

Challenge 2: Data-driven verification of uncertain Markov models with
prior knowledge (Part III of this thesis).

Most approaches for the verification of Markov models are model-based. That is,
these approaches rely on an explicit description of the model and its uncertainty.
However, in many realistic applications, the model or some of its elements may
not be available in explicit form. In Example 1.5, we assumed that we knew the
distribution over the parameters (G,~), but what if this distribution is unknown?
Similarly, what if the transition probabilities of a Markov model are unknown and
instead must be learned by interacting with the system? In reality, assuming no
prior knowledge about a system at all may be too strong. Instead, we often have
some prior knowledge about the system. We can encode this prior knowledge in
a Markov model with a fixed parametric structure, such as in Fig. 1.4a. With this
parametric structure, we can encode dependencies between different elements of
the model. However, data-driven approaches for uncertain Markov models whose
parametric structure is known are severely lacking.

In addressing this second challenge, we develop novel data-driven approaches for
the verification of uncertain Markov models whose parametric structure is known.
In particular, our approaches leverage the parametric structure of the model as prior
knowledge, which leads to more efficient and less conservative solutions than neglecting
these parametric structures completely.

1
1.6 Overview of Key Techniques 11

Challenge 3: Robust verification for continuous-time Markov chains with
uncertainty (Part IV of this thesis).

Over the past decades, various versions of Markov models with uncertainty in
the transition probabilities have been developed, such as interval MDPs (IMDPs)
and robust MDPs (RMDPs). These models inherently evolve over discrete time
steps; however, accurately modeling physical systems often requires a continuous-
time perspective. In this thesis, we specifically focus on continuous-time Markov
chains (CTMCs), which are the continuous-time variant of the discrete-time Markov
chains discussed earlier in this chapter. Approaches for CTMCs with uncertainty
are significantly less developed than their discrete-time counterparts. Thus, the
verification of CTMCs with uncertainty, for example in the transition probabilities
(also called transition rates), remains a challenging task.

To address this third challenge, our next main contribution is to develop novel ap-
proaches for verifying CTMCs with uncertainty. We consider two distinct settings of
uncertainty: (1) CTMCs with distributions over the transition rates, and (2) CTMCs
where the initial state is unknown and must instead be estimated from previous ob-
servations. For both settings, we develop an algorithm that solves the corresponding
verification problems, while providing rigorous mathematical guarantees.

Challenge 4: Tool support for analyzing Markov models with uncertainty
(all parts of this thesis).

Mature tool support exists for analyzing Markov models without uncertainty, with
Storm [HJKQ+22] and PRISM [KNP11] being two notable examples that we promin-
ently use throughout this thesis. Most of the algorithms are based on variants of
dynamic programming [Bel66], such as value iteration algorithms [SB98]. However,
these tools are largely restricted to Markov models without uncertainty, with the
exception of interval MDPs, for which support has recently been added. Thus, in
addressing the previous three challenges, we also aim to develop prototypical tools
that implement the algorithms proposed in this thesis and can be used as a basis for
further research.

Our contribution to addressing this fourth challenge is to develop a set of tools that
implement the algorithms proposed in this thesis. Our goal is not to develop full-fledged
commercial tools but instead to develop prototypical tools that other researchers can use
as a basis for further research. All of our implementations are open-source, archived in
public repositories, and documented. By doing so, we strive to maximize the reusability
of our implementations by other researchers who aim to advance the field of robust
verification of stochastic systems.

1.6 Overview of Key Techniques
We now provide a brief introduction to four key techniques that we use prominently
throughout this thesis. Our goal here is to provide high-level and accessible intuition
about these techniques while postponing technical details to the relevant chapters.

12 1 Introduction

0.35 0.3

0.25 0.4

0.4

0.7

0.6

B1 B2 B3

B4 B5 B6

(a) Original Markov chain.

0.75

0.25 [0.6, 0.7]
[0.3, 0.4]

B1 B2+5

B3+4 B6

(b) Abstraction of model (a).

Figure 1.5: A Markov chain and its abstraction in the form of an interval Markov chain,
obtained by merging states with the same color.

Probabilistic model checking
As already discussed, the verification of Markov models involves checking whether a
model satisfies a given specification, or to what extent a specification is satisfied [BK08].
Probabilistic model checkers are tools that implement such verification methods.
Throughout this thesis, we prominently use both the model checkers Storm [HJKQ+22]
and PRISM [KNP11] to analyze (discrete-time and continuous-time) Markov chains, and
Markov decision processes and their extension with parametric and interval-valued
probabilities. Since we already discussed the quantitative verification problems that we
will consider in this thesis (namely, evaluation and synthesis problems), we will not go
into more detail here.

Model abstraction
abstraction Abstraction is the process of generalizing details away from a model under study to

focus attention on details of greater importance [Kra07]. In the same spirit, we can also
say that one model is an abstraction of another model. Abstraction is a key concept in
computer science [CS07] and, in particular, in model checking [BK08; Her02] and model
learning [Vaa17]. In this thesis, we prominently use abstraction to simplify Markov
models whose analysis is intractable or infeasible into Markov models that we can
analyze. For example, the discrete-state Markov chain from Fig. 1.2 is an abstraction of
the continuous-state representation for the drone dynamics in Fig. 1.1. Abstraction is
particularly useful for Markov models with continuous state and action spaces: Analyz-
ing continuous Markov models is generally intractable, while their finite abstractions
can be analyzed efficiently with standard methods from probabilistic model checking.

Abstraction errors | However, the discrete-state Markov chain from Fig. 1.2 does
not capture the original continuous dynamics exactly. For example, in the continuous
model, we could ask for the distance traveled at any time C ≥ 0, but in the discretized
Markov chain, we only modeled time in steps of 30minutes. In other words, we incurred
an abstraction error by converting the continuous model into a discrete one. Due to
abstraction errors, we cannot just expect the analysis outcomes on the abstract model
to carry over to the original, continuous system.

Sound abstraction | In practice, we often do not want an abstraction that simply
approximates the behavior of a model. Instead, we want that analyzing the abstraction
provides a sound result for the original model, often in the form of an upper or lower
bound on the analysis outcome. To achieve this, we typically want an abstraction that

1
1.6 Overview of Key Techniques 13

either overapproximates or underapproximates the behavior of a model. For example,
consider the Markov chain in Fig. 1.5a and its abstraction in Fig. 1.5b with intervals
of transition probabilities, where we merged the states with the same colors. This
abstraction is a simple example of a so-called interval Markov chain, which is a variant
of a Markov chain where the transition probabilities are given as intervals.

Now consider the verification problem of computing the probability to reach state
B6. In the original Markov chain, this probability is 0.35 · 0.7 + 0.4 · 0.6 = 0.485. For the
abstraction, we can perform a robust analysis similar to the analysis in Example 1.4, to
compute the minimal probability of reaching B6 for any choice of probabilities. This
minimal probability of reaching B6 is obtained by choosing the lower bound probability
of 0.6 in the interval [0.6, 0.7]. Thus, we obtain a robust reachability probability of
0.75 · 0.6 = 0.45, which is a lower bound on the outcome of 0.485 for the original Markov
chain. Hence, we say that, for this verification problem, the interval Markov chain in
Fig. 1.5b is a sound abstraction of the original Markov chain in Fig. 1.5a.

Robust optimization
robust op-
timization

Robust optimization is a branch of mathematical optimization that deals with problems
where certain parameters are only known up to a given uncertainty set [BH22; RM19;
BBC11; BGN09]. Let Δ denote this uncertainty set. A typical robust optimization problem
has the following form:

minimize
E∈R=

5 (E)

subject to 6(E, X) ≤ 0 ∀X ∈ Δ,
(1.1)

where 5 (E) is a cost function (or objective function), which is a function of the = decision
variables E ∈ R= , and 6(E, X) is a constraint that depends on both E and the uncertainty
variable X . Intuitively, solving Eq. (1.1) amounts to finding values for E (which is a vector
of = decision variables) such that 5 (E) is minimized, while at the same time ensuring that
the constraint 6(E, X) is satisfied for this choice of E and for all values of the uncertainty
variable X ∈ Δ. A more graphical interpretation of this optimization problem can be
found in [CG18a, Chapter 1].

Solving robust optimization problems | The optimization problem in Eq. (1.1) is
called a robust optimization problem because the constraint is enforced for all values of
the uncertainty variable X ∈ Δ. If 5 and 6, as well as the uncertainty set Δ, have a “nice”
structure,1 then the robust optimization problem can be solved efficiently.

Application in verification | Robust optimization is tightly connected to verifying
Markov models with uncertain transition probabilities [GLD00; NG05; XM10; WKR13].
In particular, several common verification problems for robust Markov chains and robust
MDPs (whichwe formally introduce in Sect. 3.3) can be formulated as robust optimization
problems [PLSS13]. Intuitively, the uncertainty set Δ of the robust optimization problem
represents the set of possible transition probabilities of the Markov model. Then, solving
this robust optimization problem corresponds to finding the minimal (or maximal) value

1For example, when both 5 and 6 are affine and Δ is a convex polytope, then the problem reduces to a
linear program, which can be solved efficiently; see, e.g., the books [BH22; BV14] for details.

14 1 Introduction

of, for example, the probability of reaching a target state, over all possible transition
probabilities in the uncertainty set.

The scenario approach
Robust optimization does not assume any structure over the uncertainty set Δ and
always assumes that X ∈ Δ takes the worst possible value. This assumption can be too
conservative in practice. Moreover, in many cases, we actually have some knowledge
about the likelihoods of different X ∈ Δ. We can capture this knowledge in a probability
distribution P over the set Δ, which assigns a probability for each X ∈ Δ to occur.2 Instead
of enforcing the constraint 6(E, X) for all X ∈ Δ (as we did in the robust optimization
problem), we will allow for a small probability that the constraint is violated. Let Y
be the maximal probability by which we allow the constraint 6(E, X) to be violated.
Then, we consider the following optimization problem, which is commonly called a
chance-constrained problem:

minimize
E∈R=

5 (E)

subject to P
(
X ∈ Δ : 6(E, X) ≤ 0

)
≥ 1 − Y.

(1.2)

Solving this chance-constrained problem can be interpreted as follows. We want to find
a value E ∈ R= for the decision variables that minimizes 5 (E). However, at the same
time, we must choose E such that, for at least a 1 − Y probability of the values X ∈ Δ, the
constraint 6(E, X) is satisfied. A graphical interpretation of this type of solution can be
found in [CG18a, Chapter 1].

Performance vs. risk | In the chance-constrained problem, the parameter Y is a
tuning knob that allows for a trade-off between performance (in terms of a low cost
5 (E)) and risk (in terms of the probability that the constraint 6(E, X) is violated). In other
words, the parameter Y represents the level of risk we are willing to take. If we pick
Y = 1, then we completely neglect the constraint. If, on the other extremum, we pick
Y = 0, then the chance-constrained reduces to a robust problem as in Eq. (1.1).3

Solving chance-constrained problems | In general, solving chance-constrained
optimization problems is very difficult.4 This is where the so-calledscenario

approach
scenario approach

comes in, a methodology that became popular due to [CC05; CG08]. Since then, many
important extensions of the theory have been developed, such as [CGP09; CG11; ESL15;
GZMG+16; CG18b; GC22; RPM23]. Intuitively, the scenario approach assumes that
we have access to a set of # samples of the uncertainty variable, {X1, . . . , X# }, drawn
independently from the probability distribution P. Instead of the chance-constrained
problem in Eq. (1.2), we then formulate the followingscenario

problem
scenario (optimization) problem:

minimize
E∈R=

5 (E)

subject to 6(E, X8) ≤ 0 ∀8 = 1, . . . , # .
(1.3)

2We formalize such a setting further in Chapters 9 and 12.
3To be more precise, this reduction is only up to values of X ∈ Δ with a nonzero probability.
4A detailed discussion of why solving chance-constrained problems is difficult is beyond our scope, and
we refer the interested reader to the papers [Pré03; RS03] or the book [Pré13] instead.

1
1.7 Navigating This Thesis 15

Observe that the scenario optimization problem only enforces the constraint 6(E, X8)
for each sample X8 , where 8 ranges from 1 to # . Thus, given that 5 and 6 are convex
functions in the decision variables E , the scenario optimization problem can be solved
efficiently with convex optimization techniques [BV14]. Now, the main beauty of the
scenario approach is that the solution to the scenario optimization problem is, with
at least a certain probability 1 − V , also a feasible solution to the chance-constrained
optimization problem in Eq. (1.3). The parameter V is called the confidence level and
depends on the number of samples # we used, and on the violation probability Y we
considered. The theory of the scenario approach gives us a formula that relates the
sample size # , the violation probability Y, and the confidence level V [CG08; CG11].

The scenario approach in this thesis | We use the scenario approach in several parts
of this thesis. First, we use the scenario approach in Chapters 6 and 7 for estimating upper
and lower bounds on transition probabilities of abstractions of continuous-state Markov
models. Second, we use the scenario approach in Chapter 9 for verifying parametric
MDPs where we have access to a probability distribution over the parameter values.
Finally, we consider a similar setting in Chapter 12 for parametric continuous-time
Markov chains with distributions over parameter values.

1.7 Navigating This Thesis
This thesis consists of the five main parts shown in Fig. 1.6. Some (sub)sections of
the chapters are preceded with an asterisk (*), meaning that these sections contain
mathematical details or proofs that can be safely skipped by the reader.

Of course, you are most welcome to read everything from this thesis. However, if you
are interested in a specific topic, you can also read most of the main parts independently.
The overall structure and dependencies between the parts and chapters of this thesis are
sketched in Fig. 1.6.

We briefly summarize each of the chapters. Where applicable, we list the publications
(see Sect. 1.8 for the full references) on which each of the chapters is based.

Part I: Foundations
• Chapter 2. Preliminaries
We introduce the mathematical notation used throughout this thesis, and we recap
several important concepts and definitions from probability theory.

• Chapter 3. A Primer on Markov Decision Processes
We give a primer on MDPs and discuss how to perform common analyses for these
models. Furthermore, we discuss generalizations of MDPs to uncertain transition
probabilities, particularly as so-called robust and interval MDPs.

Part II: Discrete-time stochastic systems
In this first main part of the thesis, we study discrete-time stochastic systems (DTSSs)—a
particular type of Markov model with continuous state and action spaces. We focus on
reach-avoid control tasks: Reach a desirable target state (within a given time limit), while
always avoiding unsafe states in the meantime.

16 1 Introduction

• Chapter 4. Foundations of DTSSs
We introduce the fundamentals of DTSSs and discuss probabilistic reach-avoid
control tasks as the main control objectives that we study. Moreover, we show that,
due to the continuous and stochastic nature of DTSSs, computing the probability
that a given policy satisfies a reach-avoid task is intractable in general.

• Chapter 5. Probabilistic Simulation Relations (based on [1; 6; 7])
We solve control tasks for DTSS based on an abstraction into a (discrete) MDP. We
discuss the requirements for this MDP to be a sound abstraction of the DTSS (in the
sense discussed in Sect. 1.6). These requirements are captured in a mathematical
relation between the DTSS and the MDP, called a probabilistic simulation relation.
We use theMDP abstraction to compute a guaranteed lower bound on the probability
that a reach-avoid task is satisfied by the DTSS.

Part I. Foundations

Part III. Parametric Markov
Decision Processes

Part II. Discrete-Time
Stochastic Systems

Part IV. Continuous-
Time Markov Chains

Part V. Outlook

Chapter 1. Introduction

Chapter 2. Preliminaries

Chapter 3. A Primer on
Markov decision processes

Chapter 4. Foundations
of DTSSs

Chapter 5. Probabilistic
Simulation Relations

Chapter 6. Reach-Avoid
Control of Linear DTSSs

Chapter 7. DTSSs With
Uncertain Parameters

Chapter 8. Foundations
of Parametric MDPs

Chapter 9. The Scenario
Approach for Parametric

MDPs

Chapter 10. Sensitivity
Analysis for Parametric

Markov Chains

Chapter 11. Foundations
of CTMCs

Chapter 12. CTMCs
With Uncertain Rates

Chapter 13. CTMCs
With Imprecisely

Timed Observations

Chapter 14. Tool support

Chapter 15. Conclusion
and Future Work

Background
material

Contributions
of this thesis

Figure 1.6: The overall structure of this thesis, highlighting its five main parts. Chapters
that contain novel contributions are shown in red, while the chapters that
contain background material are shown in gray.

1
1.7 Navigating This Thesis 17

• Chapter 6. Reach-Avoid Control of Linear DTSSs (based on [1; 7; 5; 10])
To use the results from Chapter 5 to solve a reach-avoid control problem for a DTSS,
we need to construct a finite-state abstraction in the form of an MDP that creates a
probabilistic simulation relation. In this chapter, we present a tractable algorithm
to find such an MDP abstraction. We focus on a particular class of DTSS, where
the dynamics are linear in the state and control input.

• Chapter 7. DTSSs With Uncertain Parameters (based on [6])
We study a variant of DTSS with set-bounded uncertain parameters. Specifically,
these uncertain parameters are assumed to lie in a convex uncertainty set, but we
do not assume any probability distribution over these parameters. In this chapter,
we extend our abstraction framework and the notion of probabilistic simulation
relations to such DTSS with uncertain parameters.

Part III: Parametric Markov decision processes
In this part, we focus on verification problems for parametric Markov decision pro-
cesses (pMDPs), which are a generalization of MDPs to transition probabilities given as
polynomial functions over parameters.

• Chapter 8. Foundations of Parametric MDPs
We describe the fundamentals of pMDPs and discuss how, by fixing a value for the
parameters of the pMDP, we obtain a standard MDP that we can analyze using the
methods from Chapter 3.

• Chapter 9. The Scenario Approach for Parametric MDPs (based on [2])
We study a setting similar to Example 1.5, where we are given a pMDP and a
distribution over the parameters. However, in contrast with this example, we do
not assume that this distribution over the parameters is known. The problem is
to compute the probability that the pMDP satisfies a given specification when the
parameter values are sampled according to this unknown distribution. We present
a data-driven method based on the scenario approach to obtain a rigorous solution
to this problem.

• Chapter 10. Sensitivity Analysis for Parametric Markov Chains (based on [4])
We present a novel and efficient method for sensitivity analysis of parametric
robust Markov chains. These models incorporate parameters and sets of probability
distributions to alleviate the often unrealistic assumption that precise probabilities
are available. Using techniques from convex optimization, we perform a sensitivity
analysis in terms of partial derivatives with respect to the uncertain transition
probabilities. Our approach can be used to reduce the sample complexity in a
model-based learning setting.

Part IV: Continuous-time Markov chains
In this part, we study verification problems for CTMC, which are the continuous-time
counterpart of standard (discrete-time) Markov chains.

18 1 Introduction

• Chapter 11. Foundations of CTMCs
We describe the fundamentals of CTMCs, and we discuss how to express and
compute common measures of interest. Furthermore, we introduce parametric
CTMC (pCTMC) as a parametric extension similar to pMDP.

• Chapter 12. CTMCs With Uncertain Rates (based on [3])
We study pCTMCs with a probability distribution over the parameters. This prob-
ability distribution encodes uncertainty about the transition rates of the CTMC.
We consider the following verification problem: From a finite set of parameter
samples and a user-specified confidence level, compute prediction regions on the
reachability probabilities. We provide a principled solution to this problem based
on techniques from the scenario approach.

• Chapter 13. CTMCs With Imprecisely Timed Observations (based on [11])
We consider runtime monitoring for CTMCs. In such applications, we must incor-
porate past observations, whose timings may be uncertain. Thus, we consider a
setting in which we are given a sequence of imprecisely timed labels called the evid-
ence. We provide a principled approach to compute reachability probabilities, which
we condition on this evidence. In other words, we compute a method for computing
conditional probabilities for CTMCs with imprecisely timed observations.

Part V: Outlook
• Chapter 14. Tool Support
In this chapter, we provide a brief overview of our prototypical Python tools that
implement the algorithms presented in this thesis.

• Chapter 15. Conclusion and Future Work
In this final chapter, we reflect on the four main challenges that we posed above.
We discuss to what extent our contributions in this thesis have addressed each of
these challenges. Furthermore, we present a guide to robust verification under
uncertainty, with several questions that practitioners can ask when aiming to verify
a Markov model with uncertainty. Finally, we present an outlook on future research
directions which, we believe, are promising to pursue.

1.8 Overview of Publications
The following academic publications form the basis of the contributions presented in
this thesis. The reference numbers listed here are also those used throughout the thesis
to refer to these publications.

The papers below are the result of great team effort and dedication from all authors
involved. Thus, attributing specific contributions of papers to the individual authors
is generally impossible. Nevertheless, the Radboud University doctorate regulations
request a specification of the contributions to the core papers of the thesis. For all
papers where I am listed as the first author, I have been involved as a leading author
in all stages of the research, including developing theory and methodology, literature
research, writing, implementation. The only exception is our position paper [8], which
is rather a joint survey in which we describe our group’s research vision.

1
1.8 Overview of Publications 19

Cited publications
[1] T. Badings, A. Abate, N. Jansen, D. Parker, H. A. Poonawala and M. Stoelinga.

‘Sampling-Based Robust Control of Autonomous Systems with Non-Gaussian Noise’.
AAAI. AAAI Press, 2022, pages 9669–9678. doi: 10.1609/AAAI.V36I9.21201.

[2] T. Badings, M. Cubuktepe, N. Jansen, S. Junges, J. Katoen and U. Topcu. ‘Scenario-
Based Verification of Uncertain Parametric MDPs’. Int. J. Softw. Tools Technol. Transf.
24.5 (2022), pages 803–819. doi: 10.1007/S10009-022-00673-Z.

[3] T. Badings, N. Jansen, S. Junges, M. Stoelinga and M. Volk. ‘Sampling-Based Veri-
fication of CTMCs with Uncertain Rates’. CAV (2). Volume 13372. Lecture Notes
in Computer Science. Springer, 2022, pages 26–47. doi: 10.1007/978-3-031-
13188-2_2.

[4] T. Badings, S. Junges, A. Marandi, U. Topcu and N. Jansen. ‘Efficient Sensitivity
Analysis for Parametric Robust Markov Chains’. CAV (3). Volume 13966. Lecture
Notes in Computer Science. Springer, 2023, pages 62–85. doi: 10.1007/978-3-
031-37709-9_4.

[5] T. Badings, H. A. Poonawala, M. Stoelinga and N. Jansen. ‘Correct-by-Construction
Reach-Avoid Control of Partially Observable Linear Stochastic Systems’.ArXiv preprint
(2023). doi: 10.48550/arXiv.2103.02398.

[6] T. Badings, L. Romao, A. Abate and N. Jansen. ‘Probabilities Are Not Enough: Formal
Controller Synthesis for Stochastic Dynamical Models with Epistemic Uncertainty’.
AAAI. AAAI Press, 2023, pages 14701–14710. doi: 10.1609/AAAI.V37I12.26718.

[7] T. Badings, L. Romao, A. Abate, D. Parker, H. A. Poonawala, M. Stoelinga and N.
Jansen. ‘Robust Control for Dynamical Systems with Non-Gaussian Noise via Formal
Abstractions’. J. Artif. Intell. Res. 76 (2023), pages 341–391. doi: 10.1613/JAIR.1.
14253.

[8] T. Badings, T. D. Simão, M. Suilen and N. Jansen. ‘Decision-Making Under Uncer-
tainty: Beyond Probabilities’. Int. J. Softw. Tools Technol. Transf. 25.3 (2023), pages 375–
391. doi: 10.1007/S10009-023-00704-3.

[9] L. Rickard, T. Badings, L. Romao and A. Abate. ‘Formal Controller Synthesis for
Markov Jump Linear Systems with Uncertain Dynamics’. QEST. Volume 14287. Lec-
ture Notes in Computer Science. Springer, 2023, pages 10–29. doi: 10.1007/978-
3-031-43835-6_2.

[10] T. Badings, L. Romao, A. Abate and N. Jansen. ‘A Stability-Based Abstraction Frame-
work for Reach-Avoid Control of Stochastic Dynamical Systems with Unknown Noise
Distributions’. ECC. 2024. doi: 10.48550/arXiv.2404.01726.

[11] T. Badings, M. Volk, S. Junges, M. Stoelinga and N. Jansen. ‘CTMCs with Imprecisely
Timed Observations’. TACAS (2). Volume 14571. Lecture Notes in Computer Science.
Springer, 2024, pages 258–278. doi: 10.1007/978-3-031-57249-4_13.

https://doi.org/10.1609/AAAI.V36I9.21201
https://doi.org/10.1007/S10009-022-00673-Z
https://doi.org/10.1007/978-3-031-13188-2_2
https://doi.org/10.1007/978-3-031-13188-2_2
https://doi.org/10.1007/978-3-031-37709-9_4
https://doi.org/10.1007/978-3-031-37709-9_4
https://doi.org/10.48550/arXiv.2103.02398
https://doi.org/10.1609/AAAI.V37I12.26718
https://doi.org/10.1613/JAIR.1.14253
https://doi.org/10.1613/JAIR.1.14253
https://doi.org/10.1007/S10009-023-00704-3
https://doi.org/10.1007/978-3-031-43835-6_2
https://doi.org/10.1007/978-3-031-43835-6_2
https://doi.org/10.48550/arXiv.2404.01726
https://doi.org/10.1007/978-3-031-57249-4_13

20 1 Introduction

Further publications
Beyond the publications directly cited in this thesis, I have contributed to the following
papers before and during my Ph.D.

T. Badings, V. Rostampour and J. M. Scherpen. ‘Distributed Building Energy Storage
Units for Frequency Control Service in Power Systems’. IFAC-PapersOnLine 52.4 (2019).
CSGRES 2019, pages 228–233. doi: 10.1016/j.ifacol.2019.08.190.

V. Rostampour, T. Badings and J. M. A. Scherpen. ‘Buildings-to-Grid Integration with
High Wind Power Penetration’. CDC. IEEE, 2019, pages 2976–2981. doi: 10.1109/
CDC40024.2019.9030242.

T. Badings and D. S. van Putten. ‘Data Validation and Reconciliation for Error Correction
and Gross Error Detection inMultiphase Allocation Systems’. Journal of Petroleum Science
and Engineering 195 (2020), page 107567. doi: 10.1016/j.petrol.2020.107567.

V. Rostampour, T. Badings and J. M. A. Scherpen. ‘Demand Flexibility Management for
Buildings-to-Grid Integration with Uncertain Generation’. ENERGIES 13.24 (2020). doi:
10.3390/en13246532.

T. Badings, A. Hartmanns, N. Jansen and M. Suilen. ‘Balancing Wind and Batteries:
Towards Predictive Verification of Smart Grids’. NFM. Volume 12673. Lecture Notes in
Computer Science. Springer, 2021, pages 1–18. doi: 10.1007/978-3-030-76384-
8_1.

T. Badings, N. Jansen, L. Romao and A. Abate. ‘Correct-by-Construction Control for
Stochastic and Uncertain Dynamical Models via Formal Abstractions’. FMAS@iFM.
Volume 395. EPTCS. 2023, pages 144–152. doi: 10.4204/EPTCS.395.10.

T. Badings, W. Koops, S. Junges and N. Jansen. ‘Learning-Based Verification of Stochastic
Dynamical Systems with Neural Network Policies’. CoRR abs/2406.00826 (2024). doi:
10.48550/ARXIV.2406.00826.

M. Nazeri, T. Badings, S. Soudjani and A. Abate. ‘Data-Driven Yet Formal Policy Synthesis
for Stochastic Nonlinear Dynamical Systems’. Under submission (2024). url: https:
//arxiv.org/abs/2501.01191.

M. Suilen, T. Badings, E. M. Bovy, P. David and N. Jansen. ‘Robust Markov Decision
Processes: A Place Where AI and Formal Methods Meet’. Principles of Verification: Cycling
the Probabilistic Landscape : Essays Dedicated to Joost-Pieter Katoen on the Occasion
of His 60th Birthday, Part III. Springer Nature Switzerland, 2024, pages 126–154. doi:
10.1007/978-3-031-75778-5_7.

F. Souza, T. Badings, G. Postma and J. Jansen. ‘Integrating Expert and Physics Knowledge
for Modeling Heat Load in District Heating Systems’. Accepted to IEEE Transactions on
Industrial Informatics (2025).

https://doi.org/10.1016/j.ifacol.2019.08.190
https://doi.org/10.1109/CDC40024.2019.9030242
https://doi.org/10.1109/CDC40024.2019.9030242
https://doi.org/10.1016/j.petrol.2020.107567
https://doi.org/10.3390/en13246532
https://doi.org/10.1007/978-3-030-76384-8_1
https://doi.org/10.1007/978-3-030-76384-8_1
https://doi.org/10.4204/EPTCS.395.10
https://doi.org/10.48550/ARXIV.2406.00826
https://arxiv.org/abs/2501.01191
https://arxiv.org/abs/2501.01191
https://doi.org/10.1007/978-3-031-75778-5_7

21

Part I

Foundations

2

23

2 Preliminaries
In this short chapter, we define the basic notation that we use throughout the thesis.
Furthermore, we describe the basic concepts from convex optimization and probability
theory that we use in this thesis.

2.1 Basic Notation
We start by defining the mathematical notation that we use in the thesis. As a start-
ing point, we assume that the reader is familiar with basic concepts from real ana-
lysis [Rud+64] and linear algebra [Str23], referring to these books for details on defini-
tions and notation.

Sets | As is standard, we use R, Q, and N to denote the real, rational, and natural
numbers (with 0 as a natural number), respectively. We use subscripts R≥0, R≤0, R>0,
and R<0 to restrict the real numbers to nonnegative, nonpositive, strictly positive, and
strictly negative numbers, respectively. We use the same subscript-notation to constrain
the rational numbers Q and real numbers N. The cardinality of a discrete set - is |- |.
We write closed and open intervals as [0,1] ⊆ R and (0,1) ⊆ R, respectively, where
0,1 ∈ R and 0 ≤ 1.

For sets .1, . . . , .= , = ∈ N≥0, the generalized Cartesian product is written as
>=

8=1 .8 =

.1 × .2 × . . . × .= . We interchangeably use the notations 8 = 1, . . . , ? and 8 ∈ {1, . . . , ?}
to denote ranging 8 over the integers 1 to ? .

Properties of sets | Let �Y (G) ⊂ R= be the open ball of size Y > 0 and centered at
G ∈ R= in the Euclidean space:

�Y (G) = {G ′ ∈ R= : |G − G ′ | < Y} .

Given a set + , we can define several important related sets. The interiorinterior of a set + ⊂ R= ,
denoted by int(V), is defined as the set of all interior points of + :

int(V) = {E ∈ + : ∃Y > 0. �Y (E) ⊂ + } .

The closureclosure of a set + ⊂ R= , denoted by closure(V), is the set of all points E ∈ + such
that every open ball centered at E contains a point in + :

closure(V) = {E ∈ R= : ∀Y > 0. �Y (E) ∩+ ≠ ∅} .

Finally, the boundaryboundary of a set + ⊂ R= , denoted by X+ , is defined as the closure of +
minus the interior of + :

X+ = closure(V) \ int(V).

As a simple example, consider the set, = (0, 1] ⊂ R. The interior of, is int(W) =
(0, 1), its closure is closure(W) = [0, 1], and its boundary is X, = {0, 1}.

24 2 Preliminaries

In this thesis, we will only consider the interior, boundary, and closure of sets defined
on Euclidean spaces. Note that there are alternative yet equivalent ways to define these
sets; see [Rud+64] for more details.

Vectors and matrices | We use G ∈ R= to denote a real-valued column vector of
size = ∈ N. All vectors are column vectors unless stated otherwise. Similarly, we use
� ∈ R=×< to denote a real-valued matrix with = ∈ N rows and< ∈ N columns.

Theidentity
matrix

identity matrix of size = ∈ N, i.e., the matrix with ones on the diagonal and zeros
elsewhere, is written as �= ∈ R=×= .

Thediagonal
matrix

diagonal matrix diag(G) ∈ R=×= has vector G ∈ R= on the diagonal and is zero
elsewhere.

The inverse of a real-valued square matrix � ∈ R=×= is denoted by �−1. The (Moore-
Penrose)pseudoin-

verse
pseudoinverse �† of a real-valued matrix � ∈ R=×< satisfies four conditions:

(1) ��†� = �, (2) �†��† = �†, (3) (��†)> = ��†, and (4) (�†�)> = �†�. While not all
matrices have an inverse, the pseudoinverse always exists. For a square, nonsingular
matrix � ∈ R=×= , the inverse and the pseudoinverse are the same, i.e., �−1 = �†.

Functions | We write a function 5 from a set - to a set . as 5 : - → . . We may also
use the notation 5 : G ↦→ 5 (G) to denote a mapping from G ∈ - to 5 (G) ∈ . . Note that
we use different symbols→ and ↦→ for these two ways of defining a mapping.

Apartial map partial map (or partial function) 5 from a set - to a set . is a function from a subset
(⊆ - to . and is written as 5 : - ⇀ . . For a (partial) function 5 , we denote the domain
and support as dom(5) and supp(5), respectively. We prominently use partial maps to
define Markov decision processes (MDPs) (see Def. 3.1) where only a subset of actions
may be enabled in each state.

Theindicator
function

indicator function 1/ : - → {0, 1} over a set / ⊆ - is defined for all G ∈ - as
1/ (G) = 1 if G ∈ / and 1/ (G) = 0 otherwise.

Convex polytopes | A (bounded)convex
polytope

convex polytope) ⊂ R= is defined as the intersec-
tion of a finite number of half-spaces, such that

) =
{
G ∈ R= : �G ≤ 1, � ∈ R<×=, 1 ∈ R<

}
.

This half-space representation of a convex polytope is also known as theH-representation.
A convex polytope) is equivalently described by its vertices E1, . . . , E@ , @ ∈ N>0, referred
to as the V-representation. Concretely, the convex polytope) is theconvex hull convex hull of
its vertices {E1, . . . , E<}, which we denote by conv(E1, . . . , E=) ⊂ R= . Algorithms for
switching between convex polytopes in H-representation and V-representation exist,
such as the double description method [MRTT53], which is implemented in the C-library
cddlib [Fuk21].

2.2 Optimization Problems
We prominently use (convex) optimization throughout this thesis. We briefly introduce
the notation for optimization problems and discuss convexity, while referring to the
book [BV14] for a comprehensive introduction. A typicaloptimiza-

tion
problem

optimization problem (also

2

2.3 Probability Theory 25

called optimization program) is defined as

minimize
E∈R=

50(E)

subject to 51(E) ≤ 0 ∀8 = 1, . . . ,<,
(2.1)

where E ∈ R= are called the decision variables, 50 : R= → R is the objective function, and
58 : R= → R for 8 = 1, . . . ,< are the constraint functions.

Optimal solution | The value of the optimization problem in Eq. (2.1) for E ∈ R= is
50(E). A choice E ∈ R= is feasible if all constraints are satisfied, i.e., if 58 (E) ≤ 0 for all
8 = 1, . . . ,<. An optimal value of the optimization problem is the smallest value over all
feasible E ∈ R= :

5 ★0 = inf
{
50(E) : E ∈ R# , 51(E) ≤ 0∀8 = 1, . . . ,<,

}
.

While the optimization problem in Eq. (2.1) minimizes the objective function, we can
also maximize a function by minimizing its negation −50(E).

Convexity | Convexity is a crucial property of optimization problems because it
allows for efficient solution methods [BV14]. A convex function is defined as follows.

Definition 2.1 A function 5 : R= → R is convex
function

convex if

5 (UG + V~) ≤ U 5 (G) + V 5 (~)

for all G,~ ∈ R= and for all U, V ∈ R such that U + V = 1, U ≥ 0, V ≥ 0.

Intuitively, a function is convex if the line segment between any two points on the graph
of the function lies above the graph itself. An optimization problem is convex op-

timization
problem

convex if the
objective function 50 and all constraint functions 58 , 8 = 1, . . . ,< are convex. Most of the
optimization problems we encounter in this thesis are convex and can thus be solved
efficiently with convex optimization solvers, such as Gurobi [Gur23] or ECOS [DCB13].

2.3 Probability Theory
In this thesis, we reason about stochastic uncertainty in a probability-theoretic frame-
work. While we expect you (the reader) to obtain a deeper understanding of our results
if you are familiar with the basics of probability theory, it is not a big problem if you do
not have this background knowledge.

We assume familiarity with basic concepts such as f-algebras and probability meas-
ures. We refer to [BR07] for a comprehensive introduction of measure theory, and to
books such as [Dur10; Wil91; Kal02] for an introduction of probability theory.

2.3.1 Probability distributions
We start our discussion with the concept of a measurable space. For the definition of a
f-algebra, we refer to any of the books above.

26 2 Preliminaries

Definition 2.2 (Measurable space) Ameasurable
space

measurable space is a pair (Ω, F) consisting
of a set Ω and a f-algebra F of subsets of Ω.

When we equip a measurable space with a probability measure P : F → [0, 1], we
obtain a probability space.

Definition 2.3 (Probability space) Aprobability
space

probability space is a triple (Ω, F , P), where
Ω is a set of outcomes called the sample space, F is a f-algebra over Ω, and P : F →
[0, 1] is a probability measure.

Probability spaces will form the basis for reasoning about stochastic uncertainty
throughout this thesis.

Discrete distributions | Measurability concerns do not apply to distributions over
discrete sets. Thus, we simplify the notation for (discrete) probability distribution over
finite or countably infinite sets as follows.

Definition 2.4 (Discrete probability distribution) Let- be a finite or countably
infinite set. Adiscrete

distribution
discrete probability distribution over - is a function ` : - → R≥0 such

that
∑

G∈- ` (G) = 1.

In this definition, the set - is implicitly endowed with a f-algebra F = 2- being the
power set of - . For a probability distribution ` over a set - , we call ` (G) the probability
of G ∈ - . The support of a distribution ` over - , written as supp(`), is the subset of
- that has positive probability, i.e., supp(`) = {G ∈ - : ` (G) > 0}. For a set - , we
denote the set of all distributions over - by Distr(-). One special distribution if the

Dirac
distribution

Dirac distribution X~ : - → R≥0 over a set - , with ~ ∈ - , which is defined as X~ (G) = 1
for G = ~ and X~ (G) = 0 otherwise.

2.3.2 Random variables
Random variables formalize the concept of a quantity that depends on random events.
By definition, a random variable is a measurable function.

Definition 2.5 (Measurable function) Let (Ω, F) and (Ω′,G) be measurable
spaces. A function 5 : Ω → Ω′ ismeasurable

function
measurable (with respect to the pair (F ,G))

if 5 −1(�) ∈ F for all � ∈ G.

A random variable is a measurable function between two measurable spaces.

Definition 2.6 (Random variable) Let (Ω, F) and (Ω′,G) be measurable spaces.
A function - : Ω → Ω′ is called arandom

variable
random variable if - is measurable with respect

to the pair (F ,G).

2.3.3 Stochastic processes
By ordering multiple random variables over an index set, we obtain a stochastic process.
Often, this index set represents time, such that a stochastic process models the evolution

2

2.3 Probability Theory 27

of a random process over time. In this thesis, we only consider stochastic processes
evolving over discrete time steps, which are the result of a countable collection of
random variables.

Definition 2.7 (Stochastic process) A sequence (-:):∈N B {-: : : = 0, 1, . . .} of
random variables -: : Ω → Ω′ from the common probability space (Ω, F , P) to the
measurable space (Ω′,G) is called a (discrete-time) stochastic

process
stochastic process.

Without loss of generality, Def. 2.7 assumes that each random variable -: of the
stochastic process maps to the same measurable space. The next important concept is
that of a filtration, which intuitively can be used to encode the information contained in
the history of a stochastic process.

Definition 2.8 (Filtration) A collection {F: }:∈N such that F0 ⊆ F1 ⊆ · · · ⊆
F is called a filtrationfiltration on the measurable space (Ω, F). If (Ω, F) is equipped
with a probability measure P, then the triple (Ω, F , {F: }:∈N , P) is called a filtered
probability space.

Particularly useful is the so-called natural filtration of a stochastic process. For this
definition, let f ({-1, -2, . . . , -=}) denote the f-algebra generated by the collection of
= ∈ N random variables -1, -2, . . . , -= , as defined in the standard way; see, e.g., [CE15]
for a definition.

Definition 2.9 (Natural filtration) Let (-:):∈N be a stochastic process defined
on the probability space (Ω, F , P). The natural

filtration
natural filtration {F: }:∈N is defined for all

: ∈ N as F: = f (∪:8=0-8).

Consider a concrete outcome l ∈ Ω which determines the values for a stochastic
process (-:):∈N. Intuitively, the natural filtration {F: }:∈N models the information
about l at every time step : ∈ N. The more fine-grained the f-algebra F: at time : ,
the more information we have about l . Furthermore, observe that, by definition of the
filtration, the information about l cannot decrease over time.

Definition 2.10 A stochastic process (-:):∈N from the probability space (Ω, F , P)
to the measurable space (Ω′,G) is called adapted

stochastic
process

adapted (to the filtration {F: }:∈N) if for
each : ∈ N, the random variable -: is measurable with respect to the pair (F: ,G),
i.e., if - −1

:
(�) ∈ F: for all � ∈ G.

If a stochastic process is adapted, the value -: (l) is known to us at time : . Note that
any stochastic process is an adapted process with respect to its natural filtration.

3

29

3 A Primer on Markov Decision Processes
Summary | Discrete-time Markov chains (DTMCs) are probabilistic models that
exhibit the so-called Markov property: In any state, the probability distribution over
the next state is independent of previous states. Markov decision processes (MDPs)
extend DTMCs with nondeterministic action choices and are widely used for modeling
sequential decision-making problems. In this chapter, we give a general overview of
DTMCs and MDPs and discuss how to formulate common measures for these models,
such as reachability probabilities and cumulative expected rewards. Finally, we introduce
robust Markov decision processes (RMDPs) and interval Markov decision processes
(IMDPs) as extensions of MDPs with uncertain transition probabilities.

Origins | None of the content in this chapter is novel. For comprehensive introduc-
tions to DTMCs and MDPs, we refer to [BK08; Put94]. For details on RMDPs, we refer
to the seminal papers [GLD00; NG05; WKR13].

Background | While we introduce the relevant Markov models from their basic
definitions, some level of acquaintance with transition systems is desirable; see, for
example, [BK08] for a comprehensive introduction.

3.1 Markov Decision Processes
We define Markov decision processes (MDPs) and discrete-time Markov chains (DTMCs).
Thereafter, we discuss paths, schedulers, and how to perform common analyses (such as
computing reachability probabilities and expected rewards).

Atomic propositions | Throughout this thesis, let �% be a finite set of atomic
proposition

atomic propos-
itions. In practice, these propositions express fundamental statements that are either
true or false in each state of a model. For example, an atomic proposition 0 ∈ �% may
model being in an unsafe state and is thus true in a subset of unsafe states. Multiple
atomic propositions can be true in a single state.

Definition 3.1 (MDP) A Markov
decision
process

Markov decision process (MDP) is a tuple M B
((,�2C, B� , %, !, A) where (is a finite set of states,�2C is a finite set of actions, B� ∈ (is
an initial state, % : (×�2C ⇀ Distr(() is a transition probability function, ! : (→ 2�%

is a labeling function, and A : (→ R≥0 is a state reward function.

The MDP transition function is partial
transition
function

partial in general (denoted by the symbol⇀), meaning
that not all state-action pairs (B, 0) ∈ (×�2C are in the domain of % . By using a partial
transition function, we can model that only a subset of actions may be enabled in each
state. The set of actions enabled in state B ∈ (is�2C (B) B {0 ∈ �2C | (B, 0) ∈ dom(%)} ⊆

30 3 A Primer on Markov Decision Processes

0.1

0.9

0.1

0.9

0.1

0.4

1.0
take-BICYCLE 0.9

take-Bus 0.6

HOME

BICYCLE (25%) BICYCLE (50%) BICYCLE (75%)

GRADUATION-CAP

Bus

Figure 3.1: Going to university (GRADUATION-CAP) by bicycle (BICYCLE) or bus (Bus), modeled as an MDP
with two actions in the initial states. The other states have only a single
action enabled (and thus have nondeterminism).

�2C . Without loss of generality, we assume that at least one action is enabled in every
state, i.e., |�2C (B) | ≥ 1 for all B ∈ (, also referred to as the MDP being free ofdeadlock deadlocks.

Example 3.2 Suppose that you have to go to the university for a lecture. You can
choose to travel by bike or by bus—which option will get you the fastest at the
university? We model this scenario as an MDP, where each step represents 10min.
If you go by bus, there is a 0.6 probability that the bus shows up, and a 0.4 probability
that it does not. However, once the bus shows up, you are at university in one time
step. By contrast, taking the bike takes multiple time steps, but the probability of a
delay (e.g., due to a red traffic light) is lower. The resulting MDP is shown in Fig. 3.1
and will be our running example throughout this chapter.

Remark 3.3 (Omitting rewards and labels) For some analyses (such as reachab-
ility probabilities; see Sect. 3.2.2), the reward function A is irrelevant. In such cases,
we omit the reward function and write an MDP asM B ((,�2C, B� , %, !). Similarly,
we often omit the labeling function ! from the MDP definition and, instead, work
with specifications defined directly over subsets of states (′ ⊂ (.

We call the triple (B, 0, B′) with probability % (B, 0) (B′) > 0 atransition transition. Each transition
(B, 0, B′) represents an edge in the graph structure of the MDP, where B is the outgoing
state and B′ is the ingoing state. A transition (B, 0, B) where the outgoing and ingoing
states are the same is called aself-loop self-loop. A state B ∈ (for which the only outgoing
transition (B, 0, B) is a self-loop is calledabsorbing

state
absorbing.

We interpret a DTMC as a special case of MDP with a single action in every state.

Definition 3.4 (DTMC) Adiscrete-
time

Markov
chain

(discrete-time) Markov chain is an MDP with |�2C (B) | =
1 for all B ∈ (. We write a DTMC as a tuple D B ((, B� , %, !, A), where (, B� , !, and A
are defined as in Def. 3.1, and where the transition probability function is defined as
% : (→ Distr(().

For DTMCs, the transition probability function can equivalently be seen as a matrix

3

3.1 Markov Decision Processes 31

% ∈ R |(|× |(| , such that %8, 9 ≥ 0 for all 8, 9 ∈ {1, . . . , |(|} and ∑ |(|
9=1 %8, 9 = 1 for all

8 ∈ {1, . . . , |(|}. In this thesis, however, we will interpret the transition function % as a
map from states to distributions rather than a matrix.

3.1.1 Paths and sets of paths
LetM = ((,�2C, B� , %, !) be an MDP. A MDP

path
path of MDPM is an (in)finite sequence c B

B000B101 · · · of states and actions, such that 08 ∈ �2C (B8) for all 8 ∈ N, and % (B8 , 08) (B8+1) >
0. The (8 + 1)th state in an (in)finite path c = B000 · · · B808 · · · is denoted by c (8) B B8 .
Similarly, we denote a path fragment as c (8, . . . , 9) B B808B8+108+1 · · ·0 9−1B 9 , where
8, 9 ∈ N and 8 ≤ 9 . For an (in)finite path c = B000B101 · · · , we write the first state of c as
first(c) B B0. Furthermore, for a finite path c = B000B101 · · · B= , we denote the last state
by last(c) B B= and we define the length of c as |c | B = + 1. Note that a path of length
|c | = 1 is just a single state, c = B0.

We write the set of all finite paths as ΠMfin and the set of all infinite paths as ΠMinf . The
set of all paths ΠM is the union of the finite and infinite paths, i.e., ΠM B ΠMfin ∪ ΠMinf .
For a subset of states (′ ⊆ (, we define the set of all paths starting in a state in (′ as

ΠM ((′) B
{
c ∈ ΠM : first(c) ∈ (′

}
,

and we define the sets ΠMfin ((
′) and ΠMinf ((

′) analogously. For a singleton set (′ = {B′},
we omit the brackets and write ΠM (B′).

Remark 3.5 (Paths in DTMCs) For DTMCs, the actions of a path are trivial and
thus omitted. Thus, for a DTMC D, a path is defined as c = B0B1B2 · · · , and the sets
of all, all finite, and all infinite paths defined above are denoted by ΠD , ΠDfin, and
ΠDinf, respectively.

3.1.2 Schedulers
Because the action choices are unspecified, MDPs are called nondeterministic. A schedulerscheduler
(also called policy or strategy) is a decision rule that resolves these nondeterministic
action choices.

Remark 3.6 (Schedulers vs. policies) In the literature, the term policy is argu-
ably more popular than scheduler. However, the word policy may also relate to the
continuous-state/action systems we will discuss in Part II [BS78]. For clarity, we
thus prefer using the word scheduler for (finite) MDPs, whereas we will use the
word policy for the (continuous) systems in Part II.

Schedulers for MDPs are commonly defined as a function from paths to distributions
over actions [BK08; Put94]. Such schedulers are called randomized

scheduler
randomized. On the other hand, a

scheduler that maps every path to a Dirac distribution (or equivalently, maps every path
to a single action 0 ∈ �2C) is called deterministic. For the measures and specifications
for MDPs that we consider in this thesis, randomized and deterministic schedulers lead
to the same optimal values. Thus, randomized schedulers do not provide any extra
power despite being more general than deterministic schedulers. As a result, we restrict
ourselves to deterministic schedulers in this thesis.

32 3 A Primer on Markov Decision Processes

Definition 3.7 (Scheduler) Adeterministic
scheduler

(deterministic) scheduler for MDPM is a function
f : ΠMfin → �2C mapping finite paths to actions, with f (c) ∈ �2C (last(c)) for all
paths c ∈ ΠMfin . The set of all schedulers for an MDPM is denoted bySM .

Applying a scheduler to an MDP resolves the nondeterministic action choices, res-
ulting in a DTMC that we call the induced Markov chain orinduced

DTMC
induced DTMC. As we

shall see, for most objectives in MDPs, the optimal actions depend only on the current
state and not the history of states. Stationary schedulers (also known as memoryless
schedulers [BK08]) formalize this concept.

Definition 3.8 (Stationary scheduler) A scheduler f isstationary
scheduler

stationary if for all paths
c, c ′ ∈ ΠMfin , it holds that

last(c) = last(c ′) =⇒ f (c) = f (c ′).

We simplify notation and write stationary schedulers as f : (→ �2C . The set of all
stationary schedulers for an MDPM is denoted bySMstat.

For measures with no explicit time constraints (i.e., measures over an infinite time
horizon), we shall see that we can restrict the class of schedulers to the set of stationary
schedulers when analyzing an MDP.

Example 3.9 Consider again the example MDP in Fig. 3.1. This MDP has two
stationary schedulers. The first scheduler corresponds with taking the bike, such
that f (HOME) = take-BICYCLE (the other states have only a single action enabled, so we
omit them from the scheduler definition). The second scheduler corresponds with
taking the bus, such that f ′ (HOME) = take-Bus.

However, when dealingwithmeasures over a finite time horizon, stationary schedulers
do not suffice. As an intuitive example, consider the problem of reaching a set of target
states () ⊂ (within ten steps. If we have nine more steps to go (i.e., we can still choose
nine actions), then the optimal action can be different from when we only have one
more step to go. Following the nomenclature from [Put94, Section 2.1], we formalize
this idea in the notion of a Markov scheduler.

Definition 3.10 (Markov scheduler) A scheduler f isMarkov
scheduler

Markov (or Markovian) if
for all paths c, c ′ ∈ ΠMfin , it holds that

last(c) = last(c ′) ∧ |c | = |c ′ | =⇒ f (c) = f (c ′) .

We simplify notation and write Markov schedulers as a sequence of stationary
schedulers, f = (f0, f1, . . .), where f: : (→ �2C for : ∈ N. The set of all Markov
schedulers is denoted bySMMarkov.

Observe that a Markov scheduler only depends on the last state last(c) ∈ (and
the length |c | ∈ N>0 of a path c ∈ ΠMfin . This observation motivates the notation
f = (f0, f1, . . .) for a Markov scheduler, which is also used by [Put94] and makes explicit

3

3.1 Markov Decision Processes 33

that such a scheduler only depends on the last state and the length of the path (and not
on the full path). Markov schedulers are less general than the standard definition of a
scheduler in Def. 3.7 but more general than the stationary schedulers in Def. 3.8.

Remark 3.11 (Encoding time in schedulers) Instead of using a Markov sched-
uler f = (f0, f1, . . .) as in Def. 3.10, another way to make schedulers dependent on
time is to use a stationary scheduler f ′ : (→ �2C and create a copy of the MDP
states (for every time step : ∈ N (the initial states, enabled actions, and transition
function should be modified accordingly as well; however, we omit these definitions
for brevity). Intuitively, we thus obtain a larger MDP with a factored state space
(× N, in which actions are chosen as

f ′ ((B, :)) = f: (B) ∀B ∈ (, : ∈ N.

Both of these perspectives are equivalent. In this thesis, we prefer using Markov
schedulers because it avoids having to define time in MDPs explicitly.

Probabilitymeasure | LetM = ((,�2C, B� , %, !) be anMDPwith a schedulerf ∈ SM .
We define the (standard) probability

measure
(MDP)

probability measure PrMf : ΠMfin → [0, 1] over finite paths
c = B0B1 · · · B= ∈ ΠMfin as

PrMf (c) B
=−1∏
8=0

% (B8 , f (c (0, . . . , 8))) (B8+1) . (3.1)

For stationary andMarkov schedulers, the scheduler f (c (0, . . . , 8)) in Eq. (3.1) is replaced
by the appropriate forms. Thus, for schedulers f ′ ∈ Sstat and f ′′ ∈ SMarkov, we obtain
the probability measures

PrMf ′ (c) B
=−1∏
8=0

% (B8 , f ′ (B8)) (B8+1), and PrMf ′′ (c) B
=−1∏
8=0

% (B8 , f ′′8 (B8)) (B8+1) . (3.2)

Intuitively, PrMf (c) is the probability that the Markov chain induced by applying the
scheduler f to MDPM generates the path c ∈ ΠMfin . The probability measure PrMf
also defines the probability PrMf (Ψ) for any set of finite paths Ψ ⊆ ΠMfin . For infinite
paths, we use the same notation and define PrMf as the (unique) probability measure
over the smallest f-algebra containing the cylinder sets of all finite paths. This cylinder
set construction is standard, so we refer to [BK08, Def. 10.10] for details.

Example 3.12 For our example MDP in Fig. 3.1 of traveling to the university,
consider the path c = (HOME,Bus,Bus,GRADUATION-CAP). The probability PrM

f ′ (c) for this path (under
the stationary scheduler f ′ that always chooses the bus) is obtained by multiplying
the transition probabilities of the corresponding transitions:

PrMf ′ (c) = 0.4 · 0.6 = 0.24.

34 3 A Primer on Markov Decision Processes

Remark 3.13 (Probability measure for DTMCs) Recall that applying a sched-
uler f ∈ SM to an MDPM induces a DTMC. In fact, the probability measure PrMf
is defined on this induced DTMC. As such, we may define the probability measure
for a DTMC, denoted by PrD , in the same way.

3.2 Analyzing MDPs
In this section, we introduce the analyses of MDPs we use in this thesis. For MDPs, we,
in particular, compute so-called measures of reachability and expected rewards.

3.2.1 Probabilistic computation tree logic
In this section, we introducePCTL probabilistic computation tree logic (PCTL) [HJ94], which is
a logic widely used for MDPs, and which extends the classical computation tree logic
(CTL) with the probabilistic operator P. Most of the specifications for MDP and DTMCs
considered in this thesis can be expressed in PCTL.

Definition 3.14 (Syntax of PCTL) A PCTL formula over a set of atomic proposi-
tions �% is built using the following grammar, starting with symbol Φ:

ΦFTrue | 0 | ¬Φ | Φ ∧ Φ | P⊳_ (i)
i F © Φ | ΦUΦ | ΦU≤ℎ Φ,

where 0 ∈ �% is an atomic proposition, ⊳ ∈ {<, ≤, ≥, >} is a comparison operator,
_ ∈ [0, 1] is a threshold probability, and ℎ ∈ N is a time bound.

The symbols ¬ and ∧ are the logical negation and conjunction, and the temporal
operators © (next), U (until), and U≤ℎ (bounded until) are defined in the usual way,
e.g., as also used in linear temporal logic (LTL) [Pnu77]. In Def. 3.14, the symbol Φ is
called astate/path

formula
state formula and is interpreted on the state of a DTMC. Similarly, i is called a

path formula and is interpreted on the infinite paths of a DTMC. The interpretation is
Boolean, i.e., a state (or a path) either satisfies a state (or path) formula or not.

We can derive several other useful operators from the basic PCTL syntax.

Definition 3.15 (Derived operators) From the PCTL syntax in Def. 3.14, we de-
rive the eventually operator ♦ and the globally (or always) operator 2 as follows:

P⊳_ (♦Φ) B P⊳_ (True UΦ) and P⊳_ (2Φ) B P⊲(1−_) (True U¬Φ),

where ⊳ ∈ {<, ≤, ≥, >} is a comparison operator and ⊲ is its opposite,a and _ ∈ [0, 1]
is a threshold probability. Similarly, we define the step-bounded eventually and
globally operators as

P⊳_ (♦≤ℎΦ) B P⊳_ (True U≤ℎ Φ) and P⊳_ (2≤ℎΦ) B P⊲(1−_) (True U≤ℎ ¬Φ) .
aThis opposite is defined such that if ⊳ is < then ⊲ is >, if ⊳ is ≤ then ⊲ is ≥, and so on.

3

3.2 Analyzing MDPs 35

Satisfaction relation | We often ask for the probability that an MDP, starting in
a fixed state B ∈ (, generates a path satisfying a given PCTL path formula. We call
this probability the satisfaction probability. In the following, we define the satisfaction
probability for the DTMC induced by an MDPM and a scheduler f ∈ SM . For a DTMC
D = ((, B� , %, !), the satisfaction probability is defined equivalently by replacing the
measure PrMf with PrD and the path set ΠM by ΠD .

Definition 3.16 (Satisfaction probability) LetM be an MDP with a state B ∈ (
and a scheduler SM . The satisfaction

probability
satisfaction probability PrMf (B |= i) of a PCTL path

formula i is defined as

PrMf (B |= i) B PrMf
(
c ∈ ΠM (B) : c |= i

)
.

When no state B is specified, we use the initial MDP state B� , i.e.,

PrMf (i) B PrMf
(
c ∈ ΠM (B�) : c |= i

)
.

In Def. 3.16, the term c |= i is the satisfaction relation of a PCTL formula in the
standard sense, which we revisit below [BK08, Chapter 10]. For state formulae, the
satisfaction relation |= is a relation between the states (of a DTMC and state formulae.
For path formulae, |= is a relation between infinite paths and path formulae.

Definition 3.17 (Satisfaction of PCTL) Let M = ((,�2C, B� , %, !) be an MDP
with a state B ∈ (and a scheduler f ∈ SM , let 0 ∈ �% be an atomic proposi-
tion, let Φ, Φ′ be PCTL state formulae, and let i be a PCTL path formula. The
satisfaction relation |= is defined for state formulae as

B |= 0 iff 0 ∈ !(B)
B |= ¬Φ iff B 6 |= Φ

B |= Φ ∧ Φ′ iff B |= Φ and B |= Φ′

B |= P⊳_ (i) iff PrMf (B |= i) ⊳ _.

The satisfaction relation for a path c inM is defined as

c |= ©Φ iff c (1) |= Φ

c |= ΦUΦ′ iff ∃ 9 ≥ 0.
(
c (9) |= Φ′ ∧ (∀0 ≤ : < 9 . c (:) |= Φ)

)
c |= ΦU≤ℎ Φ′ iff ∃0 ≤ 9 ≤ ℎ.

(
c (9) |= Φ′ ∧ (∀0 ≤ : < 9 . c (:) |= Φ)

)
.

It has been shown that the events specified by PCTL formulae are measurable, and
thus, satisfaction probabilities are ensured to be well-defined [BK08, Chapter 10].

3.2.2 Measures
The satisfaction probability in Def. 3.16 provides the basis for various common measure

(for MDP)
measures

of interest. In this section, we present the measures of reachability and expected rewards
that we use throughout this thesis. For MDPs, these measures are defined on the induced

36 3 A Primer on Markov Decision Processes

Markov chain for a fixed scheduler. Thus, in our notation, we will often specify both
an MDPM and a scheduler f ∈ SM . For DTMCs, the same definitions apply while
omitting any subscripts related to the scheduler.

3.2.2.1 Reachability
Reachability measures express the probability of eventually reaching a subset of states
() ⊂ (. A standard reachability measure is expressed by the PCTL path formula i = ♦() ,
and its satisfaction probability is defined as follows.

Definition 3.18 (Reachability probability) LetM be an MDP with a scheduler
f ∈ SM and a state B ∈ (, and let () ⊆ (be a set of target states.

• The probability PrMf (B |= ♦()) is called areachability
probability

reachability probability;

• For a time bound ℎ ∈ N, the probability PrMf (B |= ♦≤ℎ()) is called a step-
bounded reachability probability.

A reach-avoid measure extends a reachability measure with a set of states (* ⊆ (that
must be avoided until the target states () are reached.

Definition 3.19 (Reach-avoid probability) LetM be an MDP with a scheduler
f ∈ SM and a state B ∈ (, and let () , (* ⊆ (be sets of states.

• The probability PrMf (B |= ¬(* U ()) is called areach-avoid
probability

reach-avoid probability;

• For a time bound ℎ ∈ N, the probability PrMf (B |= ¬(* U≤ℎ ()) is called a
step-bounded reach-avoid probability.

3.2.2.2 Expected rewards
Besides measures based on PCTL, we also use measures on expected rewards. Recall
from Def. 3.1 that we consider MDPs equipped with a reward function A : (→ R≥0. For
a path c = B000B1 · · · ∈ ΠM , we define the cumulative reward rew(c) as

rew(c) B
|c |∑
8=0

rew(B8) = rew(B0) + rew(B1) + · · · + rew(B |c |).

The cumulative reward is finite for all finite paths but can be infinite for infinite paths.
We circumvent issues with infinite rewards by considering the expected cumulative
reward before reaching a given set of states. Formally, let � ⊆ (be a subset of states of
MDPM and suppose that PrMf (B |= �) = 1, that is, () is reached with probability one
from state B ∈ (. Then, the expected cumulative reward before reaching � is characterized
by a summation over finite paths only.

Definition 3.20 (Expected cumulative reward) Let M = ((,�2C, B� , %, !, A) be
an MDP with a scheduler f ∈ SM , and let � ⊆ (. Theexpected

cumulative
reward

expected cumulative reward
before reaching � is defined as

ExpRewMf (B |= ♦�) B
{ ∑

c∈ΠMfin (B,♦�)
PrMf (c) · rew(c) if PrMf (B |= ♦�) = 1,

+∞ otherwise,

3

3.2 Analyzing MDPs 37

where ΠMfin (B, ♦�) ⊆ ΠMfin is the set of paths B000B101 · · ·0=−1B= with B0 = B , B= ∈ �,
and B8 ∉ � for all 8 = 0, . . . , = − 1. When no initial state is specified, we use the initial
MDP state:

ExpRewMf (♦�) B ExpRewMf (B� |= ♦�).

Observe that ΠMfin (B, ♦�) in Def. 3.20 is the set of paths starting in B ∈ (, ending in �,
and not having reached � before. The intuitive argument allowing us to neglect infinite
paths in Def. 3.20 is that PrMf (B |= ♦�) = 1 implies that all infinite paths that never reach
� have probability zero. As a result, the expected cumulative reward is finite and can be
computed as the sum over all finite paths [BK08, Sec. 10.5.1].

Note that we define ExpRewMf (B |= ♦�) as +∞ if � is not reached with probability
one, as also done by [BK08, Sec. 10.5.1]. In practice, however, we will only consider cases
where PrMf (B |= ♦�) = 1, thus avoiding this corner case anyway.

Remark 3.21 (Discount factor) Our definition of expected cumulative rewards
in Def. 3.20 is common in formal methods but differs from the standard definition
used in artificial intelligence [SB98] and operations research [Put94]. In these areas,
it is common not to specify a set of goal states (as we did in Def. 3.20) and instead
incorporate a discount

factor
discount factor W ∈ (0, 1). The discount factor promotes immediate

rewards over future rewards and is another way to ensure that the expected cu-
mulative reward is finite (also over infinite paths). Then, the standard goal is to
compute a Markov (or even stationary) scheduler f = (f0, f1, . . .) ∈ SMMarkov that
maximizes the expected cumulative discounted reward defined as

E

[∞∑
C=0

WCA (BC)
]
,

where BC+1 ∼ % (BC , fC (BC)) for all C ∈ N, and the initial state B0 = B� is specified by the
MDP. While we refrain from using such a discount factor in this thesis and instead
follow Def. 3.20, our methods can readily be adapted to incorporate a discount factor
(e.g., value iteration is immediately compatible with a discount factor [SB98]).

3.2.3 Value iteration for MDPs
Often, we are interested in computing a scheduler that maximizes or minimizes a given
measure. For example, for a cumulative expected reward, we want to compute

f★max ∈ argmax
f∈SM

ExpRewMf (B |= ♦�), or f★min ∈ argmin
f∈SM

ExpRewMf (B |= ♦�).

We write such optimal
scheduler
(for MDP)

optimal schedulers with a ★-script. In practice, whether we maximize
or minimize will be clear from the context, and we simply write f★. Note that optimal
schedulers may not be unique.

The following is a classical result for MDPs, which shows that deterministic stationary
schedulers are sufficient to maximize (or minimize) cumulative expected rewards.

38 3 A Primer on Markov Decision Processes

Proposition 3.22 (Stationary schedulers suffice [Put94]) (Deterministic) sta-
tionary schedulers f ∈ SMstat suffice to obtain maximal and minimal values for
cumulative expected rewards:

max
f∈SMstat

ExpRewMf (B |= ♦�) = max
f ′∈SM

ExpRewMf ′ (B |= ♦�), and

min
f∈SMstat

ExpRewMf (B |= ♦�) = min
f ′∈SM

ExpRewMf ′ (B |= ♦�) .

Proposition 3.22 motivates searching the finite setSMstat of stationary schedulers only
(rather than the setSM of infinitely many schedulers; see Def. 3.7).

value
iteration Value iteration, described in Algorithm 3.1, is a classical algorithm to estimate optimal

stationary schedulers for expected cumulative rewards in MDPs. The algorithm stores a
value + (B) for each MDP state B ∈ (, which represents an estimate of a given measure
in that state. Starting from an arbitrary value +0(B) for all states B ∈ ((which can
simply be zero), the algorithm iteratively updates the values by successively applying
the Bellman backup operator (i.e., line 6 of Algorithm 3.1). The algorithm can loop over
the states B ∈ (in any order, but some choices lead to faster convergence than others
due to the dependencies between +8 (B) for different states B ∈ ((see [SB98, Chapter 4]
for details). Algorithm 3.1 terminates when the values in two consecutive iterations
differ less than some predefined n ≥ 0. Upon termination, the algorithm returns the
(stationary) scheduler that maximizes the value estimates in every state.

Remark 3.23 (Minimizing schedulers) To minimize a cumulative expected re-
ward, we replace themax and argmax operators in Algorithm 3.1 bymin and argmin,
respectively.

Algorithm 3.1 Value iteration for maximizing expected cumulative rewards in MDPs.
Input: MDPM = ((,�2C, B� , %, !, A)
Params: Precision parameter n ≥ 0
Output: Memoryless deterministic scheduler f : (→ �2C

1: +0(B) ← 0, ∀B ∈ (
2: 8 ← 0
3: repeat
4: 8 ← 8 + 1
5: for B ∈ (do
6: +8 (B) ← max0∈�2C (B) [A (B) +

∑
B′∈(% (B, 0) (B′)+8−1(B′)]

7: until |+8 (B) −+8−1 | ≤ n
8: for B ∈ (do
9: f (B) ← argmax0∈�2C (B) [A (B) +

∑
B′∈(% (B, 0) (B′)+8−1(B′)]

10: return f

3

3.2 Analyzing MDPs 39

Convergence guarantees | To analyze the convergence guarantees of the value
iteration algorithm in Algorithm 3.1, let + f (B) denote the value in state B ∈ (under a
(fixed) scheduler f ∈ Sstat:

+ f (B) = A (B) +
∑
B′∈(

% (B, 0) (B′)+ f (B′).

Using this notation, + f★

max(B) is the value in state B ∈ (under an optimal scheduler f★max.
The convergence of value iteration can then be stated as follows.

Theorem 3.24 (Correctness of value iteration [Put94, Thm. 6.3.1]) For every
n > 0, Algorithm 3.1 terminates in finitely many iterations. Furthermore, for n = 0,
the values +8 (B) for all B ∈ (in Algorithm 3.1 converge to + f★

max (B) as 8 →∞.

Thus, in the limit of infinitely many iterations, value iteration converges to an optimal
scheduler. However, no lower bound on the required number of iterations to optimality
can be given a-priori. Thus, practical implementations of value iteration use a strictly
positive precision parameter n > 0 to ensure the termination of the algorithm.

Other methods | Variants of value iteration exists for many different object-
ives [CH08], such as long-run average rewards [ACDK+17]. Besides value iteration,
other classical methods to compute (near) optimal schedulers for MDPs include policy
iteration and linear programming. For brevity, we do not discuss these methods in any
detail. A more complete introduction of policy iteration is given in [Put94; SB98], and
linear programming formulations for MDPs are provided in [BK08; Put94].

Tool support | Mature tools exist that implement algorithms such as value itera-
tion for MDPs. In this thesis, we specifically use the probabilistic model checkers
PRISM [KNP11] and Storm [HJKQ+22]. Due to the maturity and efficiency of these tools,
implementing algorithms such as value iteration ourselves is unnecessary. Hence, we
do not discuss these algorithms in more technical detail.

3.2.3.1 Unbounded reach-avoid probabilities
Anunbounded reach-avoid probability PrMf (B |= ¬(* U ()) forMDPM can be computed
using the value iteration algorithm in Algorithm 3.1 as well. Concretely, we define a
modified MDPM′ in which all states in () and (* transition to a dedicated absorbing
state B′ ∉ () ∪ (* , and which has the reward function

A (B) =
{
1 if B ∈ () \ (* ,
0 otherwise.

Then, running value iteration on the modified MDP M′ converges (as n → 0) to a
(stationary) scheduler f ∈ SM′stat that attains the maximum reach-avoid probability in
the original MDPM, i.e., for all B ∈ (,

+8 (B) → max
f∈SMstat

PrMf (B |= ¬(* U ()).

40 3 A Primer on Markov Decision Processes

Algorithm 3.2 Value iteration for maximizing over a finite horizon in MDPs.
Input: MDPM = ((,�2C, B� , %, !, A); time horizon ℎ ∈ N
Output: Markov scheduler f = (f0, . . . , fℎ), f: : (→ �2C, : = 0, . . . , ℎ

1: +ℎ (B) = A (B), ∀B ∈ (
2: for 8 = ℎ − 1, ℎ − 2, . . . , 1, 0 do
3: for B ∈ (do
4: +8 (B) ← max0∈�2C (B) [A (B) +

∑
B′∈(% (B, 0) (B′)+8+1(B′)]

5: f8 (B) ← max0∈�2C (B) [A (B) +
∑

B′∈(% (B, 0) (B′)+8+1(B′)]
6: return f

Thus, we can use value iteration to compute optimal schedulers for unbounded reach-
avoid probabilities. In addition, Proposition 3.22 for the optimality of stationary sched-
ulers also carries over. Unbounded reachability probabilities can be computed analog-
ously by setting (* = ∅.

3.2.3.2 Bounded reach-avoid probabilities
As already discussed, optimal schedulers for step-bounded PCTL formula may not be
stationary and instead depend on the number of steps until the horizon is reached. Thus,
stationary schedulers do not suffice to attain optimal values, and we need to consider
the (larger) setSMMarkov of Markov schedulers instead (as defined in Def. 3.10).

A version of value iteration for finite horizons is described by Algorithm 3.2, which
is based on a backward recursion on the value function. Intuitively, +8 (B) and f8 (B)
are, respectively, the value and the optimal action in state B at time 8 . The algorithm
computes the values at all previous times ℎ−1, ℎ−2, . . . , 0, such that+0(B) is the optimal
value at time 0. While Algorithm 3.1 converges to the optimum as n → 0, Algorithm 3.2
is exact. In other words, the scheduler f ∈ SMMarkov returned by Algorithm 3.2 satisfies

PrMf (B |= ¬(* U≤ℎ ()) = max
f∈SMMarkov

PrMf (B |= ¬(* U≤ℎ ()) .

The intuitive argument is that Algorithm 3.2 terminates in exactly ℎ iterations, whereas
Algorithm 3.1 may require infinitely many iterations for n → 0. Moreover, Algorithm 3.2
extracts the (Markov) scheduler within the loop, while Algorithm 3.1 extracts the (sta-
tionary) scheduler after terminating the loop.

3.3 Robust Markov Decision Processes
An MDP specifies a precise probability distribution over states for every pair B ∈ (and
0 ∈ �2C (B). Thus, MDPs cannot capture uncertainty about the probabilistic behavior of
a model. Robust Markov decision processes (RMDPs) are a natural extension of MDPs
with sets of transition probabilities [GLD00; NG05; XM10]. In the literature, RMDPs
have also been called bounded-parameter MDPs [GLD00] and uncertain MDPs [WTM12].
However, RMDP is arguably the most commonly used name. Formally, an RMDP is
defined as follows.

3

3.3 Robust Markov Decision Processes 41

Definition 3.25 (RMDP) A robust MDProbust MDP is a tupleM' B ((,�2C, B� ,P, !, A) where
(as forMDPs) (is a set of states,�2C is a set of actions, B� is the initial state, ! : (→ 2�%

is a labeling function, and A : (→ R≥0 is the state reward function. Different from
MDPs, the uncertain probabilistic transition function P : (×�2C ⇀ 2Distr(() maps to
sets of probability distributions over (.

Observe that the only element of an RMDP different from an MDP is the uncertain
transition function P. As for MDPs, the transition function for an RMDP is partial in
general, as only a subset�2C (B) ⊆ �2C of actions may be enabled in every state B ∈ (. For
each B ∈ (and 0 ∈ �2C (B), we call P(B, 0) ⊆ Distr(() an uncertainty

set
uncertainty set. For simplicity,

we assume that for all B ∈ (and 0 ∈ �2C (B), the uncertainty set P(B, 0) in Def. 3.25 is
non-empty. Analogous to Def. 3.4, a robust MCrobust Markov chain is an RMDP with exactly one
enabled action in every state.

Remark 3.26 (Geometry of uncertainty sets) Our definition of an RMDP in
Def. 3.25 assumes that the uncertainty sets for all state-action pairs are independent.
This assumption is known as the rectangular-

ity
rectangularity assumption, which is common in the

literature on RMDPs [WKR13] and robust optimization [BBC11], and is necessary
to guarantee computational tractability (in fact, most problems for non-rectangular
RMDPs are proven to be NP-hard [WKR13]). Moreover, in practice, we will use
RMDPs in which every uncertainty set P(B, 0) is a convex polytope, which is another
common assumption in the literature.

3.3.1 Interval MDPs
An interval Markov decision process (IMDP) is a special case of RMDPwhere the uncertain
transition functions are given as intervals [BGN09].

Definition 3.27 (IMDP) An interval
MDP

interval MDP is an RMDPM' = ((,�2C, B� ,P, !, A)
where the transition function P is defined such that for all B ∈ (and 0 ∈ �2C (B),

P(B, 0) =
{
` ∈ Distr(() : ∀B′ ∈ (, ?̌ (B, 0, B′) ≤ ` (B′) ≤ ?̂ (B, 0, B′)

0 ≤ ?̌ (B, 0, B′) ≤ ?̂ (B, 0, B′) ≤ 1
}
.

For clarity, we identify interval Markov decision processes (IMDPs) by writingMI.
Paths, sets of paths, and schedulers for RMDPs (and IMDPs) are defined and denoted
analogously to those for MDPs.

Convex uncertainty sets | Intuitively, for each transition (B, 0, B′), the uncertain
transition function of an IMDP is the interval [?̌ (B, 0, B′), ?̂ (B, 0, B′)], plus the condition
that each set % (B, 0) contains only valid probability distributions. Geometrically speaking,
for each state-action pair (B, 0), the set of distributions P(B, 0) can be thought of as the
intersection of the probability simplex over (and the hyperrectangle induced by the
intervals for each B′ ∈ (. Thus, IMDPs have convex uncertainty sets.

42 3 A Primer on Markov Decision Processes

[0.08, 0.12]

[0.88, 0.92]

[0.08, 0.12]

[0.88, 0.92]

[0.08, 0.12]

[0.20,0.65]

1.0take-BICYCLE
[0.88, 0.92]

take-Bus [0.35,0.80]

HOME

BICYCLE (25%) BICYCLE (50%) BICYCLE (75%)

GRADUATION-CAP

Bus

Figure 3.2: The scenario of traveling from home (HOME) to university (GRADUATION-CAP), with uncertainty
in the probabilities of delays when going by bike and by bus.

Example 3.28 In the bike-versus-bus example MDP from Fig. 3.1, we assumed that
we know the probability for a bus or bike delay exactly. In practice, however, these
probabilities will typically be uncertain, and the MDP in Fig. 3.1 will only be an
approximation of the scenario. By contrast, we can also take a more risk-averse
stance and instead say that we only know these probabilities up to a given interval.
For example, suppose that we have enough data to say that the probability for a
bus to be canceled is in the interval [0.20, 0.65], and similarly, the probability for a
bike delay is [0.08, 0.12]. Then, we can model our scenario as the interval Markov
decision process (IMDP) in Fig. 3.2.

3.3.2 Nature
Loosely speaking, an RMDP M' can be interpreted as a set of MDPs varying only
in their transition function. By fixing a precise transition function within the set of
transition functions P, an RMDP reduces to a standard MDP. We adopt the common
terminology that this choice of transition function from the uncertainty set P is made
by (the scheduler of) nature [NG05; BSJJ24].

Definition 3.29 (Nature) A (scheduler of)nature nature for an RMDP M' =

((,�2C, B� ,P, !, A) is a function g : ΠM'

fin × �2C → P mapping each finite path and
an action to a possible transition function % ∈ P. The set of all schedulers of nature
for an MDPM' is denoted by TM' .

Semantics | The semantics of applying a scheduler f ∈ SM' together with a nature
g ∈ TM' on an RMDP M' = ((,�2C, B� ,P, !) are as follows. Given a finite path
c ∈ ΠM'

fin of the RMDP execution thus far, the scheduler picks an action 0̃ = f (c), and
nature picks a choice of transition function %̃ = g (c, 0̃). Then, the successor state is
sampled according to the probability distribution %̃ (last(c), 0̃). As with regular MDPs,
this process is repeated indefinitely.

3

3.3 Robust Markov Decision Processes 43

Restricting nature | As with schedulers, it is unnecessary to consider the full set
T
M'

stat of all (infinitely many) schedulers of nature [Iye05]. Analogous to stationary
schedulers, we can choose to restrict the choice of transition function to be fixed once
and for all for every state-action pair (called the static uncertainty model).

Definition 3.30 (Stationary nature) A nature g is stationary if for all paths
c, c ′ ∈ ΠMfin and for all 0 ∈ �2C (last(c)), it holds that

last(c) = last(c ′) =⇒ g (c, 0) = g (c ′, 0) . stationary
nature

We simplify notation and write stationary natures as g : (×�2C → P. The set of all
stationary natures for an RMDPM' is denoted by T

M'

stat .

Similarly, we can weaken this requirement by restricting the choice of transition
function to be fixed once per time step for every state-action pair (called the dynamic
uncertainty model).

Definition 3.31 (Markov nature) A nature g is Markov
nature

Markov (or Markovian) if for all
paths c, c ′ ∈ ΠMfin and for all 0 ∈ �2C (last(c)), it holds that

last(c) = last(c ′) ∧ |c | = |c ′ | =⇒ g (c, 0) = g (c ′, 0) .

We simplify notation and write Markov natures as a sequence of stationary natures,
g = (g0, g1, . . .), where g : (×�2C → P for : ∈ N. The set of all Markov natures for
an RMDPM' is denoted by T

M'

Markov.

As we shall see, and equivalent to schedulers, stationary natures are sufficient to
attain optimal values for unbounded measures, whereas Markov natures are needed for
step-bounded measures.

3.3.3 Robust measures
Applying a scheduler and a nature to an RMDP induces a DTMC with a well-defined
probability measure PrM'

f,g : ΠM'

fin → [0, 1]. This probability measure is defined equi-
valently as for MDPs, but we replace the transition function % in Eq. (3.2) with the
transition function g (B, 0) chosen by a stationary nature, or by the transition function
g: (B, 0) chosen by a Markov nature. We can reason over all of the measures introduced
in Sect. 3.2.2 on the resulting induced DTMC.

Often, we are interested in the maximal or minimal value of a measure under any
choice of nature. For example, given a scheduler f ∈ SM' for RMDPM' , we want to
compute the robust valuerobust values for a PCTL path formula i :

min
g∈TM'

PrM'
f,g (B |= i), and max

g∈TM'

PrM'
f,g (B |= i).

Similarly, for expected cumulative rewards, we want to compute the robust values

min
g∈TM'

ExpRewM'
f,g (B |= ♦�), and max

g∈TM'

ExpRewM'
f,g (B |= ♦�).

44 3 A Primer on Markov Decision Processes

These robust values are, by definition, upper and lower bounds on the values for any
fixed nature g ′ ∈ TM' . We state this trivial yet useful result without proof in the
following “sandwich lemma.”1

Lemma 3.32 (RMDP sandwich lemma) Let M' = ((,�2C, B� ,P, !, A) be an
RMDP with scheduler f ∈ SM' and a state B ∈ (, let g̃ ∈ TM' be a nature,
and let i be a PCTL path formula. It holds that

min
g∈TM'

PrM'
f,g (B |= i) ≤ PrM'

f,g̃
(B |= i) ≤ max

g∈TM'

PrM'
f,g (B |= i) .

In addition, let � ⊆ (be a set of states. It holds that

min
g∈TM'

ExpRewM'
f,g (B |= ♦�) ≤ ExpRewM'

f,g̃
(B |= ♦�)

≤ max
g∈TM'

ExpRewM'
f,g (B |= ♦�).

3.3.4 Optimal schedulers for RMDPs
We now have two axes to maximize or minimize over: the scheduler and the nature.
This yields four cases for maximizing or minimizing over the schedulers and maximizing
or minimizing over the natures. Suppose that we have a PCTL path formula i for which
we compute a maximizing or minimizing scheduler. Asking for this probability under
the mostoptimistic

nature
optimistic nature, we obtain

f̂★max ∈ argmax
f∈SM'

max
g∈TM'

PrM'
f,g (B |= i), or f̌★min ∈ argmin

f∈SM'

min
g∈TM'

PrM'
f,g (B |= i).

(3.3)

Similarly, we can also ask for this probability under the mostpessimistic
nature

pessimistic nature:

f̌★max ∈ argmax
f∈SM'

min
g∈TM'

stat

PrM'
f,g (B |= i), or f̂★min ∈ argmin

f∈SM'

max
g∈TM'

stat

PrM'
f,g (B |= i).

(3.4)

Pessimistic values are commonly called robust.

Proposition 3.33 ([NG05, Theorem 1]) The minimize/maximize operators over
nature and the scheduler in Eqs. (3.3) and (3.4) are interchangeable.

In practice, whether we maximize or minimize over the schedulers will be clear from
the context.

Lemma 3.34 (Static vs. dynamic uncertainty [Iye05]) For stationary sched-
ulers f ∈ Sstat, the optimal values for general, stationary, and Markov natures

1In fact, this result holds for any measure, but we state it for the measures used in this thesis only.

3

3.3 Robust Markov Decision Processes 45

coincide. For example, it holds that

max
f∈SM'

stat

min
g∈TM'

PrM'
f,g (B |= i) = max

f∈SM'
stat

min
g∈TM'

stat

PrM'
f,g (B |= i)

= max
f∈SM'

stat

min
g∈TM'

Markov

PrM'
f,g (B |= i),

and the same holds for the other formulations in Eqs. (3.3) and (3.4).

Lemma 3.34 states that, when dealing with stationary schedulers, it suffices to work
with stationary natures. By contrast, for Markov schedulers, we instead need to use
Markov natures g ∈ TM'

Markov. The following statement formalizes these observations.

Proposition 3.35 ([NG05, Corollary 2]) For unbounded PCTL formulae and ex-
pected cumulative rewards, stationary (deterministic) schedulers f ∈ Sstat suffice to
attain optimal values. For step-bounded formulae, Markov (deterministic) schedulers
f ∈ SMarkov suffice to attain optimal values.

Robust value iteration | The value iteration algorithms in Algorithms 3.1 and 3.2
can be adapted to compute optimal policies under the minimizing or maximizing
nature [WKR13; Iye05; NG05]. For IMDPs, these algorithms are implemented in the
probabilistic model checkers PRISM [KNP11] and Storm [HJKQ+22]. We use these model
checkers when analyzing IMDPs in this thesis. For brevity, we omit further details on
robust value iteration and instead refer to the references above.

3.3.5 Connection to other models
RMDPs are closely related to several other modeling formalisms. In this section, we
briefly discuss the most prominent connections. However, further exploration of these
connections is beyond the scope of this thesis.

Parametric MDPs | RMDPs are closely related to parametric Markov decision pro-
cesses (pMDPs), which we formally define in Chapter 8. Intuitively, a pMDP is an MDP
where the transition probabilities are given as polynomial functions over a given set
of parameters [JJK22; Jun20]. The same parameters can be shared between transitions,
making pMDPs a powerful but often expensive-to-analyze modeling formalism. By
assigning a lower and upper bound to every parameter, we can effectively define an
RMDP with a stationary nature.

Stochastic games | An RMDP can also be interpreted as a stochastic game between
the scheduler (player one) and nature (player two) [Iye05; WKR13; XM12; NG05; GG23].
Stochastic games are usually defined with finite action spaces for both players, whereas
in an RMDP, nature generally has infinitelymany choices (e.g., the continuous probability
intervals an IMDP). However, for the convex uncertainty sets we consider in this thesis
(see Remark 3.26), optimistic and pessimistic optimal values are attained at the vertices
of the uncertainty sets [NG05]. Intuitively, an RMDP (with convex uncertainty set) can
thus be defined as a stochastic game, with (in every state) an action for player two for
every vertex of the uncertainty set.

46 3 A Primer on Markov Decision Processes

Probabilistic automata | The connection with probabilistic automata is similar to
the connection with stochastic games. Probabilistic automata combine nondeterminism
with probabilistic behavior and subsume MDPs [Seg95; SL95; Sto02]. The transition
function of a probabilistic automaton is usually defined as Δ ⊆ (×�2C ×Distr((), where
(is the set of states, and�2C is the set of actions. Thus, multiple distributions over states
may be enabled for the same state-action pair, which is analogous to the choice of nature
in an RMDP. Like stochastic games, probabilistic automata are usually defined with a
finite action space and thus capture discrete sets of probability distributions (whereas
RMDPs usually consist of continuous sets of distributions).

Summary

î Markov decision processes (MDPs) are probabilistic models with non-
deterministic action choices.

î Schedulers resolve the nondeterministic action choices in MDPs.
î Common measures of interest can be specified in probabilistic computation

tree logic (PCTL).
î Robust MDPs (RMDPs) extend MDPs with sets of transition probabilities.

47

Part II

Discrete-Time Stochastic Systems

4

49

4 Foundations of DTSSs

Summary | We study a version of Markov decision processes (MDPs) with continu-
ous state and action spaces. A common formalism for such models is a discrete-time
stochastic system (DTSS). In this background chapter, we introduce the foundations
of DTSSs and define schedulers for them (which we call policies to distinguish from
finite MDPs). We discuss common control problems for DTSSs, focusing on reach-avoid
control tasks. We show how to characterize the probability that a given reach-avoid task
is satisfied when applying a given policy to the DTSS. Finally, we discuss that, due to
the continuous and stochastic nature of DTSSs, computing this satisfaction probability
exactly is intractable in general.

Origins | This chapter does not contain novel content and instead provides the found-
ations for the subsequent chapters. For a much more in-depth treatment of discrete-time
stochastic control, we refer to [BS78].

Background | We assume the reader is familiar withMDPs (Def. 3.1) and robust MDPs
(Def. 3.25), and with computing optimal (robust) schedulers for reach-avoid probabilities.
Moreover, to capture stochastic uncertainty in models, we build upon the measure- and
probability-theoretic definitions from Sect. 2.3.

4.1 Introduction
In Chapter 3, we have discussed Markov decision processes (MDPs) and their robust
variants, which we defined to have finite state and action spaces. However, in many
situations, these finite models do not suffice, especially when modeling physical systems
that are inherently continuous. Instead, we need stochastic models with continuous state
and action spaces. In this chapter, we introduce discrete-time stochastic systems (DTSSs) as
models for complex controlled systems with continuous state and action spaces [KGS07].
DTSSs are used in many areas around control theory, including forecasting, controller
design, and filtering techniques [Söd02].

UAV motion planning | As an example, an unmanned aerial vehicle (UAV) can
be modeled as a discrete-time dynamical system, where the continuous state reflects
variables such as the current position and velocity, and the continuous actions (which
we will call control inputs) reflect actuator inputs that change the state over time. Simply
discretizing the continuous states and actions means we incur a discretization error,
which is unacceptable in safety-critical settings. Furthermore, factors such as wind
gusts and actuator imprecision cause uncertainty about the evolution of the system’s
state [BOBW10]. We model such uncertainty as a stochastic disturbance (also called

50 4 Foundations of DTSSs

Figure 4.1: A reach-avoid problem for a UAV, which needs to navigate from the blue
point to the green target while avoiding the red obstacles. In fact, we solve
this particular task for a DTSS with linear dynamics in Chapter 6.

process noise) that affects the state transitions of the system. As a result, we obtain a
model of the UAV and its environment in the form of a DTSS.

Reach-avoid control | A common task for a DTSS is to reach a desired target re-
gion while avoiding collision with certain obstacles [KIKF22]. Reach-avoid tasks are
ubiquitous in controller design [PAQM18; SKLT11; FCTS15; ECL11; YTCB+12], e.g., in
motion planning and process control. For example, the UAV in Fig. 4.1 must reach the
target region (green) within a desired time horizon, while avoiding crashing into the
obstacles (red). Often, a reach-avoid task needs to be satisfied with at least a certain
probability. Such a control problem is similar to the probabilistic computation tree logic
(PCTL) reach-avoid formulae for MDPs that we considered in Chapter 3 (see Def. 3.19).
While our methods can readily be extended to general PCTL formulae for DTSS, we
specifically focus on reach-avoid tasks in this thesis for brevity.

4.2 Discrete-Time Stochastic Systems
In this section, we provide the foundations of DTSSs and discuss how to express reach-
avoid control problems. The material in this section largely follows the definitions
in [BS78; APLS08; SL10], although the latter two references consider discrete-time
stochastic hybrid systems, which extend DTSSs with discrete behavior. Here, we neglect
partial observability and assume that the state of the system is fully observable.

To ensure that the probabilistic behavior of a DTSS is well-defined, we need to
constrain the state and action spaces to so-called Borel spaces (loosely speaking, the
inexperienced reader may simply interpret a Borel space as any “nice” subset of an
=-dimensional Euclidean space R= , or R= itself).

Definition 4.1 (Borel space) Let (.,3) be a complete and separable metric spacea
and let- ∈ B(.), where B(.) are the Borel sets of . induced by the topology given

4

4.2 Discrete-Time Stochastic Systems 51

by the metric 3 . The measurable space (-,B(-)) is called a Borel spaceBorel space, where the
f-algebra B(-) is defined as

B(-) B {- ∩ � : � ∈ B(.)} = - ∩ B(.) .

When clear from the context, we omit the f-algebra B(-) and simply write - for a
Borel space (-,B(-)).
aFor a formal introduction of complete and separable metric spaces, we refer to [BS78].

A simple example of a Borel space is (R=,B(R=)) for any dimension = ∈ N, i.e., the
set R= endowed with the Borel f-algebra over R= . Moreover, any Borel subset of a Borel
space is itself a Borel space.

The continuous state of a DTSS evolves dynamically over discrete time steps according
to some fixed update rule (a.k.a. transition function) that depends on a chosen action.
Like in an MDP, this update rule is stochastic, so repeating the same action twice in the
same state may lead to a different successor state. We formally define a DTSS as follows.

Definition 4.2 (DTSS) A discrete-
time
stochastic
system

discrete-time stochastic system (DTSS) is a tuple S B
(-,* , G� , e, 5), where

• - ⊆ R= is a Borel space, called the state space of the system;
• * ⊆ R< is a Borel space, called the (control) input space of the system;
• G� ∈ - is the initial state;
• e = (e:):∈N is a discrete-time stochastic process, called the process noise, which
is defined on a probability space (Ω, F , P) with its natural filtration {F: }:∈N
(see Def. 2.10), where for all : ∈ N, the random variable e: : Ω →Ve maps to
the same measurable space (Ve , Fe);

• 5 : - ×* ×Ve → - is a measurable function, called the state transition function
of the system, which characterizes the state evolution of the system.

In practice, we only consider DTSSs defined with relatively simple Borel spaces, such
as R= or compact subsets of R= . Thus, in Def. 4.2, a Borel space can be loosely interpreted
as any “nice subset of the Euclidean space” (such as a compact or polytopic subset of R=),
endowed with its Borel f-algebra. The DTSS in Def. 4.2 is called time-

invariance
time-invariant because

the transition function 5 is independent of the time step : ∈ N.

\ ?G

?~

Figure 4.2: Top-down view of the unicycle model.

52 4 Foundations of DTSSs

Example 4.3 (Adapted from [LaV06]) A simple unicycle model (also called a
Dubins vehicle) is described by its G and ~ coordinates (denoted by ?G and ?~) and
its orientation \ (see Fig. 4.2). In this simplified model, there are two input variables:
the driver can set the driving speed (E) and set the change in steering angle (A), both
of which are bounded by a minimum and maximum value denoted by Emin, Emax,
Amin, and Amax, respectively. However, the actual change in steering angle is noisy,
which we model by an additive Gaussian random variable. The unicycle can be
modeled as a DTSS, where

• The state space is - = R3, such that G = [?G , ?~, \] ∈ - ;
• The input space is* = [Emin, Emax] × [Amin, Amax] ⊂ R2;
• The initial state is G� ∈ - ;
• The stochastic process e = (e:):∈N is defined such that each e: = N(0, Σ) is a
zero-mean Gaussian random variable with covariance matrix Σ;

• The transition function 5 is defined, for all [?G , ?~, A] ∈ - and [E, A] ∈ * , as

5 ([?G , ?~, A]>, [E, A]>, e:) =

?G + XC · E · cos\
?~ + XC · E · sin\
\ + XC · (A + e:)

 ,
where XC ∈ R>0 is a discretization time.

The stochastic process e is also called theprocess
noise

process noise and is a stochastic disturbance
affecting the state transitions. Specifically, each random variable e: for : ∈ N is a
mapping from the measurable space (Ω, F) to the measurable space (Ve , Fe). As
such, each e: also induces a mapping of the probability measure P on (Ω, F) to a
probability measure Pe: on (Ve , Fe). We make the following (standard) assumptions on
the distribution of the process noise.

Assumption 4.4 (Noise i.i.d.) For all : ∈ N, let Pe: : Fe → [0, 1] be the induced
measure by e: on P. We assume that

• (independent): For every finite collection of sets +1, . . . ,+< ∈ Fe , with< ∈ N,
it holds that P(e1,...,e<) (∩<8=1+8) =

∏<
8=1 Pe8 (+8), where P(e1,...,e<) is the product

probability measure over (e1, . . . , e<);
• (identically distributed): For all :, ; ∈ N and for all + ∈ Fe , it holds that
Pe: (+) = Pe; (+).

Remark 4.5 (DTSS as a continuous MDP) TheDTSS in Def. 4.2 can equivalently
be represented as an MDP with an uncountably infinite number of states ((repres-
enting the state space - ⊂ R= of the DTSS), and an uncountably infinite number of
actions �2C (representing the input space* ⊂ R< of the DTSS). While interesting,
this connection does not provide more insights that add to the contributions of this
thesis. Thus, we do not explore this connection in more detail in this thesis and
instead refer to [Put94, Section 2.3.2] for further details.

4

4.2 Discrete-Time Stochastic Systems 53

4.2.1 Markov policy
The inputs to a DTSS are chosen based on a Markov policy,1 which is a sequence of
decision rules for each time step : ∈ N. Each decision rule is memoryless (i.e., it only
uses the current state G: to determine the input D:) and is a measurable function from
- to* (needed to make the closed-loop system ‘well-behaved’ [BS78]).

Definition 4.6 (Markov policy) A Markov
policy

Markov policy for a DTSS S = (-,* , G� , e, 5)
is a sequence ` B (`0, `1, `2, . . .) of measurable maps `: : - → * , : ∈ N from states
G ∈ - to control inputs D ∈ * .

The semantics for executing a Markov policy ` = (`:):∈N on a DTSS are as follows.
The initial state G0 B G� is given by the DTSS, and for all discrete steps : ∈ N, the next
state G:+1 is determined recursively as

G:+1 B 5 (G: , `: (G:), e:) . (4.1)

Thus, each state G:+1 for : ∈ N is determined by the Markov policy ` and the values
e0, e1, . . . , e: of the process noise up to time : .

Example 4.7 For the unicycle model from Example 4.3, consider the control prob-
lem of tracking the ?G axis while avoiding y-coordinates ?~ for which |?~ | ≥ 1,
starting from the origin G� = [0, 0, 0]. Our task is to design a Markov policy ` as
in Def. 4.6 that achieves this tracking task. For simplicity, we use a constant speed
of E = Ē > 0 so that the Markov policy only sets the change to the steering angle
A . Intuitively, if ?~ > 0, we want to reduce the steering angle, while if ?~ < 0,
we want to increase the steering angle. Thus, a naïve proportional Markov policy
` = (`0, `1, `2, . . .) could be linear in the y-coordinate, such that

`: =

[
Ē

−U · ?~

]
∀: ∈ N,

where U ∈ R>0 is a coefficient. However, while this simple Markov policy may work
decently in most cases, it is unclear whether the closed-loop system satisfies the
tracking task always, or, for example, with a probability of at least 99%.

The example above illustrates the need for more powerful methods that can formally
verify the performance of a closed-loop system consisting of a DTSS and a Markov
policy. In subsequent chapters of Part II of this thesis, we will present such a method,
which is based on formally relating the system with a simpler, finite-state abstraction.

Execution of DTSS | Let us investigate the probabilistic behavior of a DTSS in more
detail. Each e: : Ω → Ve is a random variable measurable with respect to the : th

element F: of the natural filtration {F: }:∈N. Since the state transition function 5 and
the Markov policy ` are measurable functions, each G:+1 : Ω → - is a random variable
measurable with respect to the pair (F: ,B(-)). Hence, for a fixed initial state G� ∈ - and

1In control theory, Markov policies are better known as (time-varying) feedback controllers or control
laws. For clarity, we use the term policy for DTSSs, while using scheduler for discrete MDPs.

54 4 Foundations of DTSSs

a Markov policy `, theexecution execution (G:):∈N is a discrete-time stochastic process defined on
the probability space (Ω, F , P), adapted to the filtration {F: }:∈N. By fixing an element
l ∈ Ω and a Markov policy `, we thus obtain thesample path sample path G� (l), G1(l), G2(l),

4.2.2 Stochastic kernel
Wewill now introduce an alternative yet equivalent representation of the DTSS that often
leads to more concise definitions and derivations. In particular, we replace the transition
function 5 and the process noise e with astochastic

kernel
stochastic kernel) : B(-) × - ×* → [0, 1],

which is a collection of probability measures on - , parameterized by - and * [Kal02].
For each+ ∈ B(-), we define the kernel) as the probability for G:+1 to be contained in
+ , conditioned on the current state G and input D:

) (+ | G,D) = P
{
l ∈ Ω : 5 (G,D, e: (l)) ∈ +

}
. (4.2)

The vertical bar indicates that) (+ | G,D) is the probability for + ∈ B(-), conditioned
on (G,D) ∈ - ×* . Using the kernel notation, Eq. (4.1) is equivalently expressed as

G:+1 ∼) (· | G: , `: (G:)), (4.3)

where the symbol ∼means that G:+1 ∈ - is sampled according to) (· | G: , `: (G:)). Thus,
in both Eqs. (4.1) and (4.3), G:+1 : Ω → - is a random variable, which takes on a concrete
value G:+1(l) ∈ - for a given value l ∈ Ω. Throughout the thesis, we will equivalently
use the transition function and kernel notations where convenient.

It has been shown [APLS08; SL10; BS78] that the DTSS execution induces a probability
measure over paths G� , G1, G2, . . ., which is uniquely defined by the stochastic kernel) ,
the initial state G� ∈ - , and the Markov policy `.

Proposition 4.8 (DTSS probability measure) Let S = (-,* , G� , e, 5) be a DTSS
and let ` be a Markov policy. The execution (G:):∈N is defined on the measurable
space (Ω′,B(Ω′)), with the sample space Ω′ = - × - × · · · endowed with its
product f-algebra B(Ω′). The execution (G:):∈N induces aprobability

measure
(DTSS)

probability measure
PS` : B(Ω′) → [0, 1] that is uniquely defined by the stochastic kernel) , the initial
state G� ∈ - , and the Markov policy `.

Proof. The proposition directly follows from applying [BS78, Proposition 7.45] to the
stochastic process (G:):∈N for the execution of the DTSS. �

As a consequence of Proposition 4.8, we can use PS` to define the probability that the
execution (G:):∈N is contained in any Borel set + ∈ B(Ω′). In the next section, we will
use this machinery to formally express the control objective that we consider.

4.3 Reach-Avoid Probability
Our goal is to find a Markov policy ` such that the DTSS execution (G:):∈N satisfies
some objective (with high probability). In this thesis, we focus on reach-avoid objectives,
which are analogous to the PCTL reach-avoid formulae introduced in Chapter 3 for
MDPs. Specifically, we consider the objective of reaching a desired set of states -) ⊂ -
in at most ℎ ∈ N ∪ {∞} steps, while always avoiding unsafe states -* ⊂ - .

4

4.3 Reach-Avoid Probability 55

Definition 4.9 (Reach-avoid specification) A reach-avoid
specifica-
tion

reach-avoid specification for a
DTSS S is a tuple i B (-) , -* , ℎ), where -) ⊂ - is a Borel set of target states,
-* ⊂ - is a Borel set of unsafe states, and ℎ ∈ N ∪ {∞} is a horizon.

Observe that the horizon is allowed to be infinite. Without loss of generality, we
assume that the target states -) and the unsafe states -* are disjoint.2

Assumption 4.10 (Target and unsafe states disjoint) The set of target and un-
safe states are assumed to be disjoint, i.e., -) ∩ -* = ∅.

Intuitively, a sample path G� (l), G1(l), G2(l) for l ∈ Ω satisfies a given reach-avoid
specification i if there exists a : ∈ {0, . . . , ℎ} such that G: (l) ∈ -) and G: ′ (l) ∉ -* for
all : ′ ∈ {0, . . . , :}. Recall from Proposition 4.8 that the execution (G:):∈N is defined on
the probability space (Ω′,B(Ω′), PS`), where the sample space is the (countably infinite)
Cartesian product Ω′ = - × - × · · · . Thus, we can use this probability space to reason
over the probability of satisfying a reach-avoid specification.

Definition 4.11 (Satisfaction probability) Let S = (-,* , G� , e, 5) be a DTSS, let
` = (`0, `1, . . .), `: : R= → * for all : ∈ N, be a Markov policy, and let i =

(-) , -* , ℎ) be a reach-avoid specification. The satisfaction probability of i under `
is defined as

PrS` (G� |= i) B PS`
{
∃: ∈ {0, . . . , ℎ} : G: ∈ -) ∧

(G: ′ ∉ -* ∀: ′ ∈ {0, . . . , :})
}
.

(4.4)

We remark that in our definition, we do not care about what happens after reaching
the target states -) . Moreover, reaching the target states may happen at any step within
the horizon (not just at the end of the horizon), which is also referred to as the first
hitting time reach-avoid problem by [SL10].

4.3.1 Computing satisfaction probabilities
It has been shown by [SL10] that the satisfaction probability PrS` (G� |= i) can be
characterized as a value function over the state space. However, as we will show
next, actually computing the satisfaction probability using this value function is often
intractable, even for a fixed Markov policy `.

We sketch the characterization of the reach-avoid probability as proposed in [SL10].
Consider a reach-avoid specification i = (-) , -* , ℎ) with a finite horizon ℎ ∈ N. The
main idea is to define a backward recursion, which is initialized as the satisfaction
probability (in terms of a value function over the state space) at the very end of the
horizon, i.e., at time step ℎ. From this final time step ℎ, we then work backward until we
reach the initial time step of zero.

First, suppose that we are at the final time step ℎ, which means that we are at the
very end of the horizon and cannot choose any action anymore. Thus, the satisfaction
probability at this step is one for all states G ∈ -) and zero elsewhere. Consequently,

2If the target and unsafe states would not be disjoint, we shrink the target states to -) \-* .

56 4 Foundations of DTSSs

the value function + `

ℎ
(G) : - → [0, 1] at time step : is defined for all G ∈ - as

+
`

ℎ
(G) = 1-)

(G) .

For previous steps : < ℎ, the value in the state G ∈ - is
• one if G ∈ -) ,
• zero if G ∈ -* , and
• determined by the value at the next time step : + 1 if G ∈ - \ (-) ∪ -*).

For brevity, define -(= - \ (-) ∪-*). Taking into account the distribution over states
at the next step : + 1, we obtain the value function

+
`

:
(G) = 1-)

(G) + 1-(
(G)

∫
R=
1- (b) ·+ `

:+1(b) ·) (3b | G, `: (G)), ∀G ∈ - .

In other words, the value function at step : is defined by the probability of reaching a
target state G ∈ -) , combined with the value function at step : + 1. By repeating this
recursive definition until step : = 0, we obtain the satisfaction probability at the initial
time step:

PrS` (G� |= i) = +
`

0 (G�).

The main challenge in actually computing + `

0 (G�) lies in the integration over the
stochastic kernel (which represents a potentially complex distribution over the state
space). In particular, we either have to represent the value functions+ `

:
for: = 0, . . . , ℎ−1

explicitly, or we have to compute a nesting of ℎ integrals directly.
An alternative is to approximate the value function, for example, by numerical in-

tegration. However, we argue that such approximative methods are undesirable for
safety-critical settings. Thus, in this thesis, we focus on computing sound lower bounds
on the satisfaction probability instead.

4.3.2 Extension to PCTL
All of the results for DTSS that we present in this thesis can be extended to general
PCTL specifications by equipping the DTSS with a labeling ! : - → 2�% . In fact, the
reach-avoid specification that we defined in Def. 4.9 can be expressed as a PCTL formula
unsafe U≤ℎ goal over two atomic propositions �% = {goal, unsafe}: one proposition
goal corresponding to the set of target states -) and another proposition unsafe for the
set of unsafe states -* . Then, the labeling function is defined such that:

goal ∈ !(G) ⇐⇒ G ∈ -) , and
unsafe ∈ !(G) ⇐⇒ G ∈ -* .

However, considering control problems given as general PCTL formulae quickly gets
cumbersome while not providing much deeper theoretical insights. For the sake of read-
ability, we, therefore, focus on reach-avoid specifications in this thesis, while referring
to our paper [9] for more details on the extension of our methods to PCTL.

4

4.3 Reach-Avoid Probability 57

Summary

î Discrete-time stochastic systems (DTSSs) are continuous-state/action sys-
tems that evolve stochastically over discrete time steps.

î The nondeterministic choices in a DTSS are resolved by a Markov policy.
î The probability that a given reach-avoid specification is satisfied under a

given policy can be characterized using a backward recursion on a value
function over the state space.

î Computing this satisfaction probability exactly is intractable in general.

5

59

5 Probabilistic Simulation Relations
Summary | As discussed in Chapter 4, exactly computing satisfaction probabilities
for discrete-time stochastic systems (DTSSs) is intractable in general. In this chapter,
we present an abstraction-based framework to synthesize a Markov policy for a given
DTSSs, together with a lower bound on the satisfaction probability under that policy.
Our framework hinges on a formal relation between the DTSS and a finite Markov
decision process (MDP) abstraction, which is called a probabilistic simulation relation.
We show that our framework leads to Markov policies for DTSSs that provably satisfy
reach-avoid specifications with at least the obtained lower bound probability.

Origins | The results in this chapter combine our contributions from several papers:
[1] Badings, Abate, Jansen, Parker, Poonawala and Stoelinga (2022) ‘Sampling-Based

Robust Control of Autonomous Systems with Non-Gaussian Noise’. AAAI.
[6] Badings, Romao, Abate, and Jansen (2023) ‘Probabilities Are Not Enough: Formal

Controller Synthesis for Stochastic Dynamical Models with Epistemic Uncertainty’.
AAAI.

[7] Badings, Romao, Abate, Parker, Poonawala, Stoelinga and Jansen (2023) ‘Robust
Control for Dynamical Systems with Non-Gaussian Noise via Formal Abstractions’. J.
Artif. Intell. Res.

[9] Rickard, Badings, Romao and Abate (2023). ‘Formal Controller Synthesis for Markov
Jump Linear Systems with Uncertain Dynamics’. QEST.

[10] Badings, Romao, Abate and Jansen (2024) ‘Exploiting Stability for Abstractions of
Stochastic Dynamical Systems’. ECC.

This chapter generalizes results from these papers into an overarching theoretical frame-
work. Thus, this chapter cannot directly be traced to one of these papers.

Background | This chapter builds directly on the definitions for DTSSs fromChapter 4.
Moreover, the reader should be familiar withMDPs and robustMarkov decision processes
(RMDPs), and with computing optimal (robust) schedulers for them (see Chapter 3).

5.1 Introduction
In Chapter 4, we have discussed reach-avoid control problems for discrete-time stochastic
systems (DTSSs). Recall that a DTSS is a tuple S = (-,* , G� , e, 5), and that a Markov
policy ` = (`0, `1, `2, . . .) is a sequence of measurable maps `: : - → * , : ∈ N, from
states G ∈ - to control inputs D ∈ * . Let ΠS denote the set of all Markov policies for
DTSS S. A reach-avoid control task can be formalized as a reach-avoid specification,
which we defined in Def. 4.9 as a tuple i = (-) , -* , ℎ) consisting of a set of target states
-) , a set of unsafe states -* , and a time horizon ℎ ∈ N ∪ {∞}.

60 5 Probabilistic Simulation Relations

ΠS

µ

(a) Policy evaluation: given
a fixed policy ` ∈ ΠS , com-
pute PrS

`
(G� |= i).

ΠS

µ?

(b) Optimal control: com-
pute a policy `★ ∈ ΠS that
maximizes PrS

`★
(G� |= i).

ρ
ΠS

Times Times

Timesµ+

(c) LB control: compute `+ ∈
ΠS such that PrS

`+ (G� |=
i) ≥ d or return False.

Figure 5.1: Three DTSS verification problems. The color gradients visualize level sets of
the satisfaction probability. In this thesis, we consider problem (c), which we
solve by iteratively searching for Markov policies, until one with a (lower
bound) satisfaction probability above the threshold of d is found.

Certifying that a DTSS satisfies a desired reach-avoid specification is paramount,
especially in safety-critical applications. In this section, we discuss the three verification
problems for DTSSs depicted in Fig. 5.1, which we respectively call the policy evaluation,
optimal control, and lower bound (LB) control problem.

5.1.1 Policy evaluation
In Chapter 4, we already considered the problem of computing the satisfaction probability
for a given policy, which we call the policy evaluation problem.

Policy evaluation problem: For a fixed Markov policy ¯̀ and a reach-avoid spe-
cification i , compute the probability PrS¯̀ (G� |= i) of satisfying the specification.

As we have seen in Sect. 4.3.1, computing the satisfaction probability involves integrating
the probability measure over (in)finite paths of the DTSS. For nontrivial Markov policies
and distributions for the stochastic noise, computing these integrals exactly becomes
infeasible in practice [BS78].

5.1.2 Optimal control
Another common problem is to compute a policy that maximizes the probability of
satisfying the reach-avoid specification, resulting in an optimal control problem.

Optimal control problem: For a fixed reach-avoid specification i , compute a
Markov policy `★ and its satisfaction probability ?★ = PrS

`★
(G� |= i), such that

`★ ∈ argmax
`∈ΠS

PrS` (G� |= i).

One typically fixes a template (such as the set of linear Markov policies, i.e., policies
with the structure `: (G) = G for some fixed matrix) for the set of policies to

5

5.1 Introduction 61

optimize over. The resulting stochastic optimal control problem can be formulated as a
nonconvex stochastic optimization problem [BS78], where the objective is to maximize
the probability of satisfying the reach-avoid specification, and where the constraints
encode the (stochastic) dynamics and the value function for the reach-avoid probability
(as described in Sect. 4.3.1). However, solving this optimization problem is intractable in
general, due to the feedback structure of the Markov policy in combination with the
nonconvexity and stochasticity of the dynamics.

5.1.3 Lower bound control
Because the previous two problems are intractable in general, we study a third type of
verification problem in this thesis. Instead of asking for a policy that maximizes the
satisfaction probability, we aim to find one for which the satisfaction probability meets a
desired threshold. However, in general we cannot guarantee that we actually find such
a policy. Thus, in this thesis, we consider the following problem.

Lower bound (LB) control problem: For a fixed reach-avoid specification i and
a threshold d ∈ [0, 1], compute a Markov policy `+ ∈ Π̃S such that

PrS`+ (G� |= i) ≥ d,

or return False if no such policy could be found.

The lower bound control problem asks for a sound but not complete solution method. If
the method returns a Markov policy, then the satisfaction probability of this policy is at
least d . However, if the method returns False, then we cannot conclude anything about
the existence of a policy with satisfaction probability at least d .

An iterative solution method | Before jumping into details, let us sketch how we
will solve the lower bound control problem in this thesis. As also visualized in Fig. 5.1c,
the main idea is to iteratively search for Markov policies until we find a policy whose
satisfaction probability meets the desired threshold of d . However, to determine whether
the threshold is met, we still need to solve a policy evaluation problem in each iteration
(which we have shown to be intractable).

Nevertheless, we shall see that, for policies with a particular structure, we can instead
compute a lower bound on the satisfaction probability. Thus, let us for now assume that
we have an oracle that, given a Markov policy with such a structure, returns a lower
bound on the satisfaction probability. If this lower bound meets the threshold, then the
actual satisfaction probability surely meets the threshold as well, so we have solved the
lower bound control problem. If the lower bound does not meet the threshold, then we
keep searching for a policy with a higher lower bound (until some termination criterion
is reached). This general solution method is expressed by Algorithm 5.1, where the
oracle is captured by the subroutine ComputePolicy.

Remark 5.1 (Nontrivial solutions) The lower bound control problem admits
trivial and uninformative solutions, because always returning False is a valid solu-
tion. However, as we will see in the experiments of Chapters 6 and 7, the algorithms
we develop to solve the problem generally lead to nontrivial solutions in practice.

62 5 Probabilistic Simulation Relations

Algorithm 5.1 High-level algorithm for solving the lower bound control problem.
Input: DTSS S = (-,* , G� , e, 5); reach-avoid specification i = (-) , -* , ℎ); satisfac-
tion probability threshold d ∈ [0, 1]
Params: Termination criterion Terminate
Output: Markov policy `+ for S, or False

1: ?0 = 0
2: for 8 = 1, 2, . . . do
3: (`8 , ?8) ← ComputePolicy(S, i) such that ?8 ≥ PrS

`8
(G� |= i)

4: if ?8 ≥ d then
5: return `+ ← `8 ⊲ Threshold probability met
6: else if Terminate is True then
7: return False ⊲ Inconclusive result

5.2 The DTSS Policy Synthesis Problem
In this chapter, we zoom in on the lower bound control problem and develop a theoretical
basis for the subroutine ComputePolicy in Algorithm 5.1 which, given a DTSS and a
reach-avoid specification, computes a policy and a sound lower bound on its satisfaction
probability. Formally, we solve the following problem.

Problem 5.2 (DTSS policy synthesis) Given a DTSS S = (-,* , G� , e, 5) and a
reach-avoid specification i = (-) , -* , ℎ), compute a Markov policy ` and a lower
bound ? on the satisfaction probability, i.e., such that

PrS` (G� |= i) ≥ ?.

Throughout this chapter, we consider again Assumption 4.4, which states that the
stochastic noise e of the DTSS is independent and identically distributed (i.i.d.).

5.2.1 Approaches to DTSS policy synthesis
Synthesizing Markov policies for DTSSs that provably satisfy reach-avoid specifications
(and, more generally, temporal logic specifications) is an active research area [KG02;
BYG17]. Traditional methods from control theory largely focus on satisfying simple
specifications and are thus insufficient for solving Problem 5.2. For example, the linear
quadratic regulator (LQR) can be used to compute a linear feedback control law that
minimizes a cost function that is quadratic in the state and control input. However,
as we have seen in Sect. 4.3.1, the cost function for a reach-avoid specifications is not
quadratic. Similarly, Lyapunov and barrier functions (and their stochastic variants) can
be used to verify the (asymptotic) stability and safety of a system [DDNZ00; TSYA20],
respectively. However, these traditional methods do not provide formal guarantees
about temporal specifications [BK08; FQMN+22; STBR11; YTCB+12].

Formal policy synthesis | Consequently, various approaches have been developed
over the past decades to compute Markov policies for reach-avoid problems. These ap-
proaches primarily focus on applications in safety-critical control engineering [APLS08;

5

5.2 The DTSS Policy Synthesis Problem 63

LSAZ22] and can be divided into several categories. First, there are approaches that
compute reachable sets directly in the continuous domain, e.g., using Hamilton-Jacobi
reachability analysis [BCHT17; HCHB+17] or optimization [RSA22]. Second, there are
approaches that use variants of Lyapunov methods that are applicable to richer spe-
cifications, such as [MCL23; AGR24; ZLHC23b]. Finally, various approaches are based
on a formal abstraction of the continuous system into a simpler (typically discrete)
model [AHLP00; LAB15; SA13].

Abstraction-based control | In this thesis, we focus on the latter abstraction-based
paradigm, which is well-studied [APLS08; AHLP00] and has applications to, for example,
stochastic hybrid [CLLA+19; LSAZ22; ZSRH+12; FHHW+11], switched [LAB15], lin-
ear [SKCC+15], and partially observable systems [HNVT+18]. In the control literature,
abstractions are also referred to as symbolic models [APLS08; LAB15; Tab09]. As we
discuss in more detail later in this chapter, under an appropriate behavioral relation
(e.g., a simulation relation [Tab09]) between both models, trajectories of the abstraction
are related to those of the dynamical system. Thus, a scheduler for the abstraction can,
by construction, be refined to a Markov policy for the original system. Various tools
exist, such as StocHy [CA19], ProbReach [SZ15], and SReachTools [VGO19].

5.2.2 Shortcomings of abstraction-based control
Despite the active research efforts on abstraction-based policy synthesis, existing ap-
proaches still have significant shortcomings.

First of all, discretizing a continuous-state model inherently leads to finite-state models
with exponentially many states in the number of state variables (also known as the
“curse of dimensionality”, a term already coined by Richard Bellman in the sixties [Bel66]).
The number of transitions1 of the abstraction grows even faster: For every discrete state,
several discrete actions are available, each of which has multiple possible successor
states. Hence, scalability remains a general concern.

Second, existing abstraction methods rely on full knowledge of the underlying DTSS
and are not robust against uncertainty in the dynamics. As a result, system parameters
(such as the mass of the aforementioned unmanned aerial vehicle (UAV), or its friction
coefficient) must be known precisely. Similarly, most methods require an explicit repres-
entation of the distribution of the stochastic noise, for example, as a Gaussian [PSQ13].
Hence, existing approaches are difficult to apply (or inapplicable at all) when there is
uncertainty about the dynamics of the DTSS.

Jumping ahead, in Chapters 6 and 7, we zoom in on two specific settings, each of
which considers DTSSs with a different form of uncertainty. As such, we address the
shortcoming that existing abstraction methods require full knowledge of the dynamics.
For each setting, we develop a tractable abstraction algorithm that aims to maximize
practical scalability, thus addressing (to some extent) the shortcoming of limited scalab-
ility. In the remainder of this chapter, we lay the theoretical foundation that underpins
these algorithms.

1The number of transitions of a finite-state model is the number of edges in the underlying graph.

64 5 Probabilistic Simulation Relations

Discrete-time
stochastic system

Finite-state
MDP abstraction

MDP scheduler f
Satisfaction probability ?★

DTSS Markov policy `

Satisfaction probability ≥ ?★

Probabilistic
simulation
relation

State B
Action

0 = f: (B)State G
Input

D = `: (G)

Policy
refinement

Figure 5.2: Our approach to solving Problem 5.2 is based on a probabilistic simulation
relation between the DTSS and an MDP abstraction.

5.2.3 An overview of our approach
A high-level overview of our approach to solving Problem 5.2 is shown in Fig. 5.2. In
a nutshell, we relate the DTSS (which has infinitely many states and actions) to an
abstraction with finitely many states and actions, which we will formalize as a Markov
decision process (MDP).2 We require that the DTSS simulates this abstract MDP, which,
loosely speaking, means that any possible probabilistic behavior of the abstract MDP
can be mimicked by the DTSS (under some Markov policy). As a main contribution, we
present sufficient requirements for the DTSS to simulate the abstract MDP in the form
of a so-called probabilistic simulation relation.

Importantly, the existence of a probabilistic simulation relation between the DTSS
and the MDP means that we can transfer satisfaction probabilities from the MDP to
the DTSS. Specifically, any scheduler for the MDP with a corresponding satisfaction
probability ?★ ∈ [0, 1] can, by construction, be translated (or refined) into a Markov
policy for the DTSS with a satisfaction probability of at least ?★. This result allows us to
reduce Problem 5.2 to computing an (optimal) scheduler for the MDP abstraction, which
can be done using the value iteration algorithms described in Chapter 3.

Outline | In the remainder of this chapter, we introduce the behavioral relation that
underpins our abstraction-based approach to solving Problem 5.2. In Sect. 5.3, we first
present the particular type of probabilistic simulation relation that we use. To put our
approach in perspective, in Sect. 5.3.3 we compare our particular relation to others
classical relations from the verification and AI literature. We show in Sect. 5.4 how the
existence of a probabilistic simulation relation between a DTSS and an MDP abstraction
can be used to solve Problem 5.2. Finally, in Sect. 5.5 we extend these results to a relation
between a DTSS and an RMDP.

5.3 Probabilistic Simulation Relations
At the core of many behavioral relations, including ours, is a (binary) relation between
the states of two models. Such a relation is a set that contains all pairs of states that are,
according so some criterion, related (or even equivalent).
2Later on, we will also use robust Markov decision process (RMDP) abstractions.

5

5.3 Probabilistic Simulation Relations 65

−1.5 −1 −0.5 0 0.5 1 1.5

B3B2B1 B4 B★

Figure 5.3: Binary relation ' between the real number line R and five discrete states
{B1, B2, B3, B4, B★}, where states with the same color are related under '.

Definition 5.3 (Binary relation) A set ' ⊆ - × . is called a binary
relation

binary relation
between sets - and . . We use the notation '(G) B {~ ∈ . : (G,~) ∈ '} and
'−1(~) B {G ∈ - : (G,~) ∈ '}. Moreover:

• If '(G) ≠ ∅ for all G ∈ - , then ' is strict (in -);
• If '(G) ≠ ∅ =⇒ |'(G) | = 1 for all G ∈ - , then ' is single-valued (in -) and we
write '(G) = ~ for (G,~) ∈ ' (i.e., we omit the fact that '(G) is a set).

Thus, ' is strict single-valued if |'(G) | = 1 for all G ∈ - .

Intuitively, a strict single-valued binary relation ' ⊆ - × . relates each item G ∈ -
with exactly one element ~ ∈ . . Thus, such a relation creates a partitionpartition of - into
subsets that are related to the same element of . , as illustrated by the next example.
Equivalently, we can represent a strict single-valued binary relation ' ⊆ - × . as a
function 5 : - → . , which is defined as 5 (G) = ~ for all (G,~) ∈ '.

Example 5.4 (Partition as a relation) Consider a DTSS S = (-,* , G� , e, 5)
whose state space is defined as - = R, and consider an MDPM = ((,�2C, B� , %)
whose state space is defined as (= {B1, B2, B3, B4, B★}. As shown in Fig. 5.3, we par-
tition - into five elements defined as -1 = [−1,−0.5), -2 = [−0.5, 0), -3 = [0, 0.5),
-4 = [0.5, 1), and -★ = (−∞,−1) ∪ [1,∞). This partition can be captured in a strict
binary relation ' between - and (, which is defined as

' = {(G, B1) : G ∈ [−1,−0.5)]} ∪ {(G, B2) : G ∈ [−0.5, 0)]} ∪
{(G, B3) : G ∈ [0, 0.5)]} ∪ {(G, B4) : G ∈ [0.5, 1)]} ∪
{(G, B★) : G ∈ (−∞,−1) ∪ [1,∞)]} .

In this and the next chapters, we exclusively use binary relations defined between the
states - of a DTSS and the states (of an MDP or RMDP.

5.3.1 Relating reach-avoid specifications
To tailor our relation to reach-avoid specifications, we first need to define how we relate
these specifications between the DTSS and the MDP. We do so using the same binary
relation ' that we later use to relate the states of the DTSS and the MDP.

Definition 5.5 (Relation between specifications) Let S = (-,* , G� , e, 5) be a
DTSS with a reach-avoid specification i = (-) , -* , ℎ), and letM = ((,�2C, B� , %)
be an MDP with sets of target and unsafe states () , (* ⊆ (. Consider a relation

66 5 Probabilistic Simulation Relations

' ⊆ - × (for S andM. We call these specificationsconsistent
specifica-

tions

consistent under ', denoted by
(() , (*) �' (-) , -*), if

1() (B) ≤ 1-)
(G) and 1(* (B) ≥ 1-*

(G) ∀(G, B) ∈ '.

Furthermore, we call these specificationsequivalent
specifica-

tions

equivalent under ', denoted by (() , (*) ≡'
(-) , -*), if the above holds with equality, i.e.,

1() (B) = 1-)
(G) and 1(* (B) = 1-*

(G) ∀(G, B) ∈ '.

Note that every pair of equivalent specifications is also consistent :

(() , (*) ≡' (-) , -*) =⇒ (() , (*) �' (-) , -*)

A pair of reach-avoid specifications is consistent under ', if the MDP target states ()
underapproximate the DTSS target states -) , and if the MDP unsafe states (* overap-
proximate the DTSS unsafe states (* . Similarly, equivalence means that the target and
unsafe states of the DTSS and MDP correspond exactly under '. Thus, equivalence is
a stronger condition than consistency: All pairs of equivalent specifications are also
consistent, but not vice versa.

Example 5.6 We continue Example 5.4 and consider the sets () = {B1} and (* =

{B4} for the MDP. Consider the following cases for the DTSS:
• For the sets -) = [−1,−0.5) and -* = [0.5, 1), we have that (() , (*) ≡'
(-) , -*), i.e., the specifications are equivalent under ';

• For the sets -) = [−1.1,−0.4) and -* = [0.6, 0.9), we have that (() , (*) �'
(-) , -*), i.e., the specifications are consistent under ';

• For the sets -) = [−1,−0.5) and -* = [0.4, 1.1), the specifications are not
equivalent nor consistent. For example, for (G, B) = (1.05, B★) ∈ ', we have that
1-*
(G) = 1 > 1(* (B) = 0.

5.3.2 Relating DTSSs and MDPs
We are now ready to define the particular variant of a probabilistic simulation relation
we employ in this thesis.

Remark 5.7 (Generality of the relation) For clarity, we tailor the probabilistic
simulation relation to the DTSS (reach-avoid) policy synthesis problem in Prob-
lem 5.2. As such, we specifically define a probabilistic simulation for the DTSS
and an MDP abstraction, and we focus on simulation with respect to reach-avoid
specifications. Nevertheless, the relation we propose can be generalized to other
specifications and models. In particular, as we discussed in Sect. 4.3.2, we may
consider more general probabilistic computation tree logic (PCTL) specifications.
Yet, for the sake of readability, we tailor our definitions and results to the simpler
yet more concrete reach-avoid policy synthesis problem in Problem 5.2.

5

5.3 Probabilistic Simulation Relations 67

Definition 5.8 (Relation between distributions) Let S = (-,* , G� , e, 5) be a
DTSS with a stochastic kernel) : B(-) ×- ×* → [0, 1], and letM = ((,�2C, B� , %)
be an MDP. Consider a strict binary relation ' ⊆ - × (. The relation ' defines
another binary relation ' ⊆ Distr(-) ×Distr((), called the lifted

relation
lifted relation, defined as

' =

{
(a, ?) ∈ Distr(-) × Distr(() : ∀B′ ∈ (. ? (B′) =

∫
-

1'−1 (B′) (b) · a (3b)
}
.

The relation ' is called the lifted relation because it lifts ' from the states of S and
M to distributions over the states. In fact, Def. 5.8 can be seen as a concretization of
the lifting of relations defined by [HSA17, Def. 5], tailored to relations between a DTSS
and an MDP. The lifting of relations over continuous sets using measures (like we have
for the DTSS) is analogous to the lifting of relations over countable or finite sets using
weight functions, as done in [SL95; Sto02].

Definition 5.9 (Probabilistic simulation relation) Let S = (-,* , G� , e, 5) be a
DTSS with a stochastic kernel) : B(-) ×- ×* → [0, 1], and letM = ((,�2C, B� , %)
be an MDP. A strict binary relation ' ⊆ - × (is a probabilistic

simulation
relation

probabilistic simulation relation
from MDPM to DTSS S if the following holds:
1. (initial states are related): For the initial states, we have (G� , B�) ∈ ';
2. (next states are related): For all (G, B) ∈ ', we have that

∀0 ∈ �2C (B), ∃D ∈ * :
(
) (· | G,D), % (B, 0)

)
∈ ',

where ' ⊆ Distr(-) × Distr(() is the lifted relation for ' as defined by Def. 5.8. We
denote such a probabilistic simulation relation ' byM �' S.a

aIntuitively, all possible behaviors of the MDP are contained in the behaviors of the DTSS.

Informally, the second requirement in Def. 5.9 states that every pair of related MDP
and DTSS states leads to related distributions in ' over successor states (under some
Markov policy). More precisely, for every related pair (G, B) ∈ ' and for every MDP
action 0 ∈ �2C (B), there exists a DTSS input D ∈ * such that the probability % (B, 0) (B′)
that the MDP transitions to state B′ ∈ (is the same as the probability that the DTSS
transitions to a state G ∈ '−1(B′) ⊆ - related to B′. This interpretation of a probabilistic
simulation relation is visualized by Fig. 5.4 and will enable us to relate satisfaction
probabilities between the MDP and the DTSS.

Example 5.10 Consider again the DTSS S, the MDPM, and the relation ' from
Example 5.4. Suppose that, for a given state-input pair (G,D) ∈ - ×* , the DTSS
kernel) (· | G,D) corresponds with a uniform distribution over [−1.5, 1.5]. We want
to find the MDP distribution ? ∈ Distr(() such that () (· | G,D), ?) ∈ ', i.e., the
kernel and MDP distribution are related under '. From Fig. 5.3, we observe that this
MDP distribution ? is defined as

? (B8) =
1
6
, 8 = 1, . . . , 4, and ? (B★) =

1
3
.

68 5 Probabilistic Simulation Relations

G

∃D ∈ *

B

B′ B′′ B′′′

∀0 ∈ �2C (B)

'−1 (B ′′′) '−1 (B ′′) '−1 (B ′)

∀ (G, B) ∈ '

∫
R= 1'−1 (B′) (b) ·) (3b | G,D) = % (B, 0) (B′) ∀B′ ∈ (

Figure 5.4: Visualization of a probabilistic simulation relation. For every pair (G, B) ∈ '
of related states and every 0 ∈ �2C (B), there must exist D ∈ * such that we
transition to a related successor state with equal probability.

5.3.3 Comparison to other behavioral relations
We briefly zoom out and make a comparison to other behavioral relations that have been
proposed in the literature. Here, we focus only on behavioral relations for stochastic
systems (and thus skip the classical notions of simulation [Mil71], alternating simula-
tion [AHKV98], and forward-backward simulation [LV95], as well as feedback refine-
ment relations [RWR17] for nonstochastic systems).

Probabilistic (bi)simulation | Probabilistic extensions of simulation and bisimula-
tion3 date back to the early 90s [LS91; SL95]. Most of these early works originate from
process calculi, which led to a slightly different perspective on probabilistic simulation
than the one we use [BK08]. For example, for two states (B, B′) to be bisimilar, [LS91]
requires that, for all actions in state B , the resulting distribution over states is related
to the distribution over states upon choosing that same action in state B′. By contrast,
Def. 5.9 allows states to be related by comparing their behavior under different actions.

Probabilistic (bi)simulation has been studied for various models and from a variety of
perspectives [BH97; DEP02; HPSW+11; HKK14]. Because exact probabilistic (bi)simula-
tion can pose too strict conditions, various metrics and approximate notions have been
developed, especially for MDPs [FPK14; GDG03; DGJP04].

As already mentioned, closest to our probabilistic simulation relation is [HSA17].
However, our approach differs from [HSA17] in the way we will deal with approxima-
tions of the relation in Def. 5.9. While [HSA17] considers approximations by allowing
for a distance between the kernels of the two models (thus enlarging the lifted relation
'), we keep the exact relation ' and instead overapproximate the abstract MDP as an
RMDP (see Sect. 5.5). In doing so, we establish a relation between the DTSS and an
RMDP, which is closer to the recent works on probabilistic (bi)simulation for interval
Markov decision processes (IMDPs) [HHSS+16; HHHT16].

MDP homomorphism | MDP homomorphisms were proposed by [RB01; RB03] as a
relation between state-action pairs of two MDPs. One of the main motivations for MDP
homomorphisms was to exploit symmetries in MDPs to improve the sample efficiency
of, for example, deep reinforcement learning [PKOW20; PWHO+20]. Because MDP
3Two systems are bisimilar if one is simulated by the other and vice versa [BK08].

5

5.4 Correct-by-Construction Markov Policy Synthesis 69

homomorphisms originate from the AI community, they are typically defined for MDPs
with a state-action reward function A : (×�2C → R≥0 and a discount factor W ∈ [0, 1].
Formally, an MDP homomorphism is defined as follows.

Definition 5.11 (MDP homomorphism [RB03]) Consider two MDPs M1 =

((1, �2C1, B� 1, %1, A1, W) and M2 = ((2, �2C2, B� 2, %2, A2, W). An MDP homomorphism
H is defined by a tuple of surjective maps (V, {UB : B ∈ (}), where V : (1 → (2 is the
state map, UB : �2C1(B) → �2C2(V (B)) is the action map for state B , and where the
following conditions hold:
1. (rewards match): For all B ∈ (1, 0 ∈ �2C1(B), we have A2(V (B), UB (0)) = A1(B, 0);
2. (transition functions match): For all B, B′ ∈ (1, 0 ∈ �2C1(B), we have
%2(V (B), UB (0)) (V (B′)) =

∑
B′′∈V−1 (B′) %1(B, 0) (B′′).

An MDP homomorphism implies that the values of related state-action pairs are
equal [LWL06; SLO22]. Much like bisimulation (and unlike simulation) relations, MDP
homomorphisms are bidirectional: If H is an MDP homomorphism fromM1 toM2,
then we can invert the maps to obtain an MDP homomorphism fromM2 toM1.

Informally, the relation in Def. 5.9 can also be interpreted as a unidirectional homo-
morphism. To understand this connection, replace the reach-avoid specification with
the equivalent reward function (as we discussed in Sect. 3.2.3). The homomorphism
from Def. 5.11 requires all state-action pairs from the DTSS to be represented in the
abstract MDP. By contrast, Def. 5.9 only requires that some state-action pairs from the
DTSS are represented in the abstract MDP. Loosely speaking, we can thus interpret a
probabilistic simulation relation as an homomorphism between the abstract MDP and a
version of the DTSS where we removed part of the state-action pairs.

Remark 5.12 (Homomorphism vs. bisimulation) A key motivation for using
MDP homomorphisms was that bisimulations used in process calculi were usually
formulated as relations between states, and not between state-action pairs [RB01].
Bisimulations used in process calculi, e.g., [Mil89; LS91], indeed only consider the
behavior between states for the same actions. Other definitions, such as e.g., [BK08],
instead abstract away from actions completely and purely look at the possible
transitions between two states. That is, two states (G1, G2) ∈ ' are bisimilar if for
any successor of G1, there is a related successor of G2 and vice versa (i.e., we are
comparing behavior under different actions). Thus, we believe that probabilistic
(bi)simulation and homomorphism for MDPs are more closely related than often
argued in the literature. However, a more detailed discussion is beyond our scope.

5.4 Correct-by-Construction Markov Policy Synthesis
The following theorem, which is the main result of this section, defines a solution to
Problem 5.2 based on a finite MDP abstraction of the DTSS. We use a probabilistic
simulation relation ' to relate the satisfaction probability of a scheduler for the MDP to
that of a Markov policy for the DTSS. This theorem only guarantees the existence of such
a Markov policy; we discuss how to compute this Markov policy in the next section.

70 5 Probabilistic Simulation Relations

Theorem 5.13 (Equivalence of satisfaction probabilities) Consider a DTSS
S = (-,* , G� , e, 5) with a reach-avoid specification i = (-) , -* , ℎ), and let
M = ((,�2C, B� , %) be an MDP with () , (* ⊆ (. Suppose there exists a strict single-
valued binary relation ' ⊆ - × (such thatM �' S and (() , (*) ≡' (-) , -*).
Then, for every Markov scheduler f ∈ SMMarkov for MDPM, there exists a Markov
policy ` as in Def. 4.6 such that

PrMf (B� |= ¬(* U≤ℎ ()) = PrS` (G� |= i) . (5.1)

Proof. Recall from Sect. 4.3.1 that, as shown in [SL10, Lemma 4], the satisfaction
probability for a given Markov policy ` can be computed recursively. For brevity,
define -(= - \ (-) ∪ -*) and define the backward recursion + `

:
: - → [0, 1] for

: = 0, . . . , ℎ − 1 as

+
`

:
(G) = 1-)

(G) + 1-(
(G)

∫
R=
1- (b) ·+ `

:+1(b) ·) (3b | G, `: (G)), ∀G ∈ -,

(5.2)

initialized with + `

ℎ
(G) = 1-)

(G) for all G ∈ - . Then, the satisfaction probability
is PrS` (G� |= i) = +

`

0 (G�). Similarly, for a scheduler f ∈ SMMarkov, the satisfaction
probability for MDPM is computed as PrMf (B� |= ¬(* U≤ℎ ()) =, f

0 (B�), where the
backward recursion, f

:
: (→ [0, 1], : = 0, . . . , ℎ − 1 is defined as

, f
:
(B) = 1() (B) + 1(((B)

∑
B′∈(

, f
:+1(B

′) · % (B, f: (B)) (B′), ∀B ∈ (, (5.3)

initialized with, f
ℎ
(B) = 1() (B) for all B ∈ (, and where ((= (\ (() ∪ (*). We will

show by induction that for all schedulers f ∈ SMarkov, there exists a Markov policy `
such that + `

0 (G) =, f
0 (B) for all (G, B) ∈ '.

Base case | First, suppose : = ℎ and let B = '(G) for any G ∈ - . Recall from Def. 5.5
that (() , (*) ≡' (-) , -*) implies that 1-)

(G) = 1() (B) and 1-*
(G) = 1(* (B) for all

(G, B) ∈ '. Thus, we have that

, f
ℎ
(B) = 1() (B) = 1-)

(G) = + `

ℎ
(G), (G, B) ∈ '.

This concludes the base case.

Inductive step | Next, suppose : < ℎ. Because ' is a strict single-valued relation,
it partitions - into sets '−1(B), B ∈ (. Thus, we rewrite Eq. (5.2) as

+
`

:
(G) = 1-)

(G) + 1-(
(G)

∑
B′∈(

[∫
R=
1'−1 (B′) (b) ·+

`

:+1(b) ·) (3b | G, `: (G))
]
.

For B′ ∈ (and : = ℎ−1, observe that for all (G, B′) ∈ ', it holds that+ `

:+1(G) =,
f
:+1(B

′),
i.e., the values + `

:+1(G) and +
`

:+1(G
′) for DTSS states '(G) = '(G ′) related to the same

5

5.4 Correct-by-Construction Markov Policy Synthesis 71

MDP states are the same. Thus, we obtain

+
`

ℎ−1(G) = 1-)
(G) + 1-(

(G)
∑
B′∈(

[
, f

ℎ
(B′)

∫
R=
1'−1 (B′) (b) ·) (3b | G, `ℎ−1(G))

]
= 1-)

(G) + 1-(
(G)

∑
B′∈(

[
, f

ℎ
(B′) · % ('(G), fℎ−1('(G))) (B′)

]
,

where the second equality follows from the second requirement in Def. 5.9. Writing
the difference between the value functions for : = ℎ − 1:

+
`

ℎ−1(G) −,
f
ℎ−1('(G)) = [1-)

(G) − 1() ('(G))] + [1-(
(G) − 1((('(G))]

×
∑
B′∈(

{
, f

ℎ
(B′) · % ('(G), fℎ−1('(G))) (B′)

}
= [1-)

(G) − 1'−1 (()) (G)] + [1-(
(G) − 1'−1 ((() (G)]

×
∑
B′∈(

{
, f

ℎ
(B′) · % ('(G), fℎ−1('(G))) (B′)

}
.

Again, due to (() , (*) ≡' (-) , -*), we have that 1-)
(G) = 1() (B) and 1-*

(G) =
1(* (B) for all (G, B) ∈ '. Thus, it holds that+ `

ℎ−1(G) =,
f
ℎ−1(B) for all (G, B) ∈ ', which

we use to obtain the general result for : < ℎ − 1:

+
`

:
(G) −, f

:
('(G)) = [1-)

(G) − 1'−1 (()) (G)] + [1-(
(G) − 1'−1 ((() (G)]

×
∑
B′∈(

{
, f

:+1(B
′) · % ('(G), f: ('(G))) (B′)

}
= 0. (5.4)

Using : = 0 in Eq. (5.4) gives + `

0 (G) =, f
0 ('(G)), which concludes the proof. �

Theorem 5.13 shows that the existence of a probabilistic simulation relation implies
that, for any MDP scheduler, there exists a Markov policy for the DTSS under which
the probabilities of satisfying the reach-avoid specifications in both models are equal.
As a result, if we are able to construct an MDP abstraction of the DTSS, then we can
compute an optimal policy on the MDP and translate back the results to the DTSS.

However, Theorem 5.13 requires that (() , (*) ≡' (-) , -*), i.e., the specifications are
equivalent under ', which is a strong requirement in general (especially if -) and ()
have a complex shape). The following result relaxes this requirement by only assuming
that (() , (*) �' (-) , -*), i.e., the specifications are consistent (but not necessarily
equivalent) under '. In that case, the MDP satisfaction probability is still a lower bound
on the DTSS satisfaction probability.

Corollary 5.14 (Lower bound on satisfaction probability) Consider again the
assumptions fromTheorem 5.13, but now consider that (() , (*) �' (-) , -*) instead
of (() , (*) ≡' (-) , -*). Then, for every Markov scheduler f ∈ SMMarkov for MDP
M, there exists a Markov policy ` as in Def. 4.6 such that

PrMf (B� |= ¬(* U≤ℎ ()) ≤ PrS` (G� |= i) . (5.5)

72 5 Probabilistic Simulation Relations

Proof. Def. 5.5 states that (() , (*) �' (-) , -*) implies that

1-)
(G) ≥ 1() (B) and 1-*

(G) ≤ 1(* (B) ∀(G, B) ∈ '.

Using these expressions to modify the proof of Theorem 5.13 leads to the value
functions satisfying, f

:
('(G)) ≤ + `

:
(G) for all : = 0, . . . , ℎ − 1, which in turn leads to

the claim in Eq. (5.5). �

We have seen that the existence of a probabilistic simulation relation implies the
existence of a Markov policy such that the DTSS satisfies a reach-avoid specification
with at least the same probability as the MDP does. In this section, we show how to
find this Markov policy based on a given MDP scheduler.

Intuitively, this Markov policy needs to pick inputs D ∈ * that preserve the prob-
abilistic simulation relation ' from the MDP to the DTSS. Recall from Def. 5.9 that, to
preserve the relation, we require for all (G, B) ∈ ' and all B′ ∈ (that

% (B, 0) (B′) =
∫
R=
1'−1 (B′) (b) ·) (3b | G,D) .

Thus, if we are given a fixed Markov scheduler f ∈ SMMarkov for the MDP, such that
0 = f: (B), we obtain

% (B, f: (B)) (B′) =
∫
R=
1'−1 (B′) (b) ·) (3b | G,D). (5.6)

Choosing any control input D ∈ * that satisfies Eq. (5.6) is guaranteed to preserve the
probabilistic simulation relation. This intuition is formalized in the notion of an interface
function, which defines the set of all control inputs such that the DTSS S has the same
probabilistic behavior as the MDPM (under scheduler f) and thus the probabilistic
simulation relation is preserved [GP09]. Since ℎ ∈ N is the horizon of the reach-avoid
specification, we only consider actions up to time ℎ − 1.4

Definition 5.15 (Interface function) Aninterface
function

interface function for a probabilistic sim-
ulation relation ' ⊆ - × ((between MDPM and DTSS S) and a Markov scheduler
f ∈ SMMarkov is a set-valued map �f

'
: - × {0, . . . , ℎ − 1} → 2* , which is defined for

all G ∈ - and : ∈ {0, . . . , ℎ − 1} as

�f' (G, :) =
{
D ∈ * : ∀B′ ∈ (, % (B, f: (B)) (B′) =

∫
R=
1'−1 (B′) (b) ·) (3b | G,D)

}
,

where B ∈ (is such that (G, B) ∈ ', and) is the stochastic kernel of DTSS S.

Thus, the interface function describes precisely the Markov policies for the DTSS for
which Theorem 5.13 holds. Embedding the interface function in a control loop leads
to the scheme shown in Fig. 5.5. As shown in this figure, the interface function uses
the scheduler as a look-up table, which, based on the current state G: , returns a control
input D: that preserves the probabilistic simulation relation.

4If ℎ = ∞, then a stationary MDP scheduler suffices to attain optimal reach-avoid probabilities. In that
case, the interface function is independent of time and is defined as a function �f

'
: - → 2* .

5

5.4 Correct-by-Construction Markov Policy Synthesis 73

DTSS
G:+1 = 5 (G: , D: , e:)

Interface
D: ∈ �f

'
(G: , :)

MDP scheduler
f = (f0, . . . , fℎ)

Stochastic noise e:

D:

G:

f

Figure 5.5: The interface function �f
'
translates an MDP scheduler f into a Markov policy

for the DTSS for the probabilistic simulation relation ' is preserved.

Lemma 5.16 (Nonemptyiness of the interface) The interface function �f
'
(G, :)

is nonempty for all G ∈ - and : ∈ {0, . . . , ℎ − 1}.

Proof. A probabilistic simulation relation ' is strict by definition. Thus, for all G ∈ - ,
there exists an B ∈ (such that (G, B) ∈ '. By Def. 5.9, for all (G, B) ∈ ' and all
0 ∈ �2C (B) (which includes f: (B) ∈ �2C (B)), there exists a D ∈ * such that

% (B, 0) (B′) =
∫
R=
1'−1 (B′) (b) ·) (3b | G,D), ∀B′ ∈ (, (5.7)

which implies that �f
'
(G, :) ≠ ∅ for all G ∈ - and : ∈ {0, . . . , ℎ − 1}. �

The following theorem shows that, by restricting the Markov policy ` to the control
inputs in an interface function �f

'
, the satisfaction probability PrS` (G� |= i) on the DTSS

is at least as high as the satisfaction probability on the MDP under scheduler f .

Theorem 5.17 (Markov policy synthesis) Let S = (-,* , G� , e, 5) be a DTSS
with a reach-avoid specification i = (-) , -* , ℎ), and let M = ((,�2C, B� , %) be
an MDP with () , (* ⊆ (. Suppose there exists a strict single-valued binary relation
' ⊆ - × (such thatM �' S and (() , (*) �' (-) , -*). Let ` = (`0, `1, `2, . . .) be
the Markov policy defined for all G ∈ - and : ∈ {0, . . . , ℎ − 1} as

`: (G) ∈ �f' (G, :),

where �f
'
is an interface function for ' and f ∈ SMMarkov. Then, it holds that

PrMf (B� |= ¬(* U≤ℎ ()) ≤ PrS` (G� |= i) . (5.8)

Furthermore, if (() , (*) ≡' (-) , -*), then the above holds with equality, i.e.,

PrMf (B� |= ¬(* U≤ℎ ()) = PrS` (G� |= i). (5.9)

Proof. We prove the theorem by showing that Theorem 5.13 holds for any Markov
policy that satisfies `: (G) ∈ �f' (G, :). That is, we need to show that

`: (G) ∈ �f' (G, :) =⇒ ∀B′ ∈ (, % (B, 0) (B′) =
∫
R=
1'−1 (B′) (b) ·) (3b | G, `: (G)),

74 5 Probabilistic Simulation Relations

which is satisfied by construction, because �f
'
(G, :) ⊆ * contains precisely the control

inputs D ∈ * such that

∀B′ ∈ (, % (B, 0) (B′) =
∫
R=
1'−1 (B′) (b) ·) (3b | G,D) .

The remainder of the proof is then equivalent to the proof of Theorem 5.13. �

Finally, we have all the ingredients to claim that Theorem 5.17 can be used to compute
Markov policies that solve Problem 5.2 in three general steps:
1. For a given DTSS, find an MDP abstractionM which yields a probabilistic simula-

tion relation ' as per Def. 5.9, i.e.,M �' S;
2. Pick any Markov scheduler f ∈ SMMarkov for the MDP and define the corresponding

interface function �f
'
as per Def. 5.15;

3. Define a Markov policy that chooses inputs contained in the interface, i.e., `: (G) ∈
�f
'
(G, :) for all G and : . Due to Theorem 5.17, the satisfaction probability under this

Markov policy is at least the satisfaction probability on the MDP.
In practice, we are interested in maximizing the satisfaction probability on the DTSS.
Thus, instead of picking any scheduler for the MDP in step two, we can compute an
optimal scheduler that maximizes the satisfaction probability on the MDP. While we
cannot provide any guarantees on the value of the satisfaction probability a-priori, we
can still use this general approach to compute a Markov policy for the DTSS with a
guaranteed lower bound on the satisfaction probability.

Remark 5.18 (Computing interface functions) One may wonder how to com-
pute the interface function �f

'
from Def. 5.15 in practice, especially due to the integral

over the state space of the DTSS. While this integral may indeed be intractable to
compute, it turns out that by carefully constructing the MDP abstraction, we can
often compute the interface function without needing to computing any integrals.
For example, in the next chapter, we will consider DTSS with additive stochastic
noise, and we show that interface functions can be computed efficiently and exactly
without computing any integrals.

5.5 DTSS Relations With Robust MDPs
Def. 5.9 of a probabilistic simulation relation requires generating an MDP abstraction
with the exact same probabilistic behavior as the DTSS. However, ensuring the exact
equivalent probabilistic behavior is often impossible, e.g., when transition probabilities
must be estimated from data (as we shall see in, Chapter 6). In such cases, it is instead
often possible to estimate the transition probabilities up to a given set and formalize the
resulting abstraction as an RMDP (or, in the specific case that these sets are intervals, as
an IMDP). We extend Theorem 5.13 to RMDP abstractions to facilitate this setting.

5.5.1 Probabilistic alternating simulation relation
The first step is to define a more general notion of probabilistic simulation. Inspired by
the notion of alternating simulation for nonstochastic systems [AHKV98; Tab09], we

5

5.5 DTSS Relations With Robust MDPs 75

define the following relation between a DTSS and an RMDP.

Definition 5.19 (Probabilistic alternating simulation relation) Let
S = (-,* , G� , e, 5) be a DTSS with a stochastic kernel) : B(-) × - ×* → [0, 1],
and letM' = ((,�2C, B� ,P) be an RMDP. A strict binary relation ' ⊆ - × (is a

probabilistic
alternating
simulation
relation

probabilistic alternating simulation relation from RMDPM to DTSS S if:
1. (initial states are related): For the initial states, we have (G� , B�) ∈ ';
2. (next states are related): For all (G, B) ∈ ', we have that

∀0 ∈ �2C (B), ∃D ∈ * , ∃% (B, 0) ∈ P(B, 0) :
(
) (· | G,D), % (B, 0)

)
∈ ',

where ' ⊆ Distr(-) × Distr(() is the lifted relation for ' as defined by Def. 5.8. We
denote such a probabilistic simulation relation ' byM' �alt

'
S.

Note that a probabilistic alternating simulation relation is almost identical to the
non-alternating version from Def. 5.9, with the exception of an additional existential
quantifier over the transition function in the second condition. From a game-based
perspective, this additional quantifier means that the DTSS can, besides the input D ∈ * ,
now also “choose” the transition function % (B, 0) ∈ P(B, 0).

Remark 5.20 (Comparison to classical alternating simulation) The classical
notion of alternating simulation reasons over two layers of nondeterminism in both
models. That is, alternating simulation is used to relate two models with both action
choices and nondeterminism in the outcomes of actions. In our setting, the RMDP
has two layers of nondeterminism (the choice of action and the choice of transition
function), whereas DTSS only has a single layer of nondeterminism (after choosing
a control input, the stochastic kernel is deterministic). Nevertheless, we use the
term alternating to emphasize the similarity to the classical notion from [AHKV98].

Recall that choosing % (B, 0) ∈ P(B, 0) for all state B ∈ (and actions 0 ∈ �2C (B) is
equivalent to reducing the RMDP to an MDP. As such, the existence of a probabilistic
alternating simulation relation from RMDPM' to DTSS S implies that there exists a
nature g ∈ TM'

Markov such that there is a probabilistic (non-alternating) simulation relation
from the induced MDPM to DTSS S.5 This argument directly leads to the following
result, which we state without further proof.

Lemma 5.21 Let S = (-,* , G� , e, 5) be a DTSS and letM' = ((,�2C, B� ,P) be an
RMDP. IfM' �alt

'
S, then there exists a nature g ∈ T

M'

Markov such thatM �' S,
whereM = ((,�2C, B� , %) is the MDP induced byM' and g .

Conversely, suppose that we have a probabilistic simulation relation ' between an
MDPM and a DTSS S. Moreover, fix any RMDPM' that can induce MDPM (under
some nature). Then, the same relation ' is also a probabilistic alternating simulation
relation betweenM' and S. We formalize this result in the following lemma.

5Recall from Sect. 3.3 that the MDP induced by applying a nature g to an RMDP M' has the same
states (, actions �2C , and initial states B� asM' , but the transition function is defined as % (B, 0) =
g (B, 0) ∈ P (B, 0) . For a Markov nature, we additionally allow for a different % (B, 0) in every step of
the execution; see the RMDP semantics in Sect. 3.3 for details.

76 5 Probabilistic Simulation Relations

Lemma 5.22 Let S = (-,* , G� , e, 5) be a DTSS, letM = ((,�2C, B� , %) be an MDP,
and letM' = ((,�2C, B� ,P) be an RMDP with the same states, actions, and initial
state asM, and such that the uncertain transition function P satisfies

% (B, 0) ∈ P(B, 0) ∀B ∈ (, ∀0 ∈ �2C (B). (5.10)

Furthermore, let ' ⊆ - × (. Then, ifM �' S, it holds thatM' �alt
'
S.

Proof. To prove the lemma, we show that satisfying the conditions of a probabilistic
simulation relation (Def. 5.9) implies the satisfaction of the conditions of a probabilistic
alternating simulation relation (Def. 5.19). First, note that the states, actions, and
initial state ofM' andM are the same. Thus, the first condition (i.e., initial states are
related) is trivially satisfied.

The second condition for a probabilistic simulation relation in Def. 5.9 states that
for all (G, B) ∈ ', it holds that

∀0 ∈ �2C (B), ∃D ∈ * :
(
) (· | G,D), % (B, 0)

)
∈ '.

where ' is the lifted relation for ' as per Def. 5.8. Now, we use the fact from Eq. (5.10)
that % (B, 0) ∈ P(B, 0). Thus, we obtain that for all (G, B) ∈ ', it holds that

∃% (B, 0) ∈ P(B, 0), ∀0 ∈ �2C (B), ∃D ∈ * :
(
) (· | G,D), % (B, 0)

)
∈ '.

By pulling the outer existential quantifier inside the universal quantifier, we obtain

∀0 ∈ �2C (B), ∃D ∈ * , ∃% (B, 0) ∈ P(B, 0) :
(
) (· | G,D), % (B, 0)

)
∈ ',

which is precisely the second condition for a probabilistic alternating simulation
relation in Def. 5.19. Thus, we conclude the proof. �

We will use Lemma 5.22 in Chapters 6 and 7 to solve the DTSS policy synthesis
problem using IMDP abstractions, rather than glsMDP abstractions.6 In particular, we
shall see that computing an MDP abstraction (with precise transition probabilities) is
often infeasible. As a solution, we instead compute an interval around each of these
transition probabilities, resulting in an IMDP abstraction for which we can apply the
results presented in section.

5.5.2 Lower bounding satisfaction probabilities
We have seen thatM �' S implies we can lower bound the satisfaction probability onS
by analyzingM. At the same time, recall from the RMDP sandwich lemma (Lemma 3.32)
that the robust (i.e., pessimistic) satisfaction probability on an RMDP is defined as the
minimum over all natures. In other words, the satisfaction probability on RMDPM'

under the most pessimistic nature is a lower bound on the satisfaction probability on
any MDP M it can induce, which thus immediately leads to a lower bound on the
satisfaction probability on S. Formalizing this intuition leads to the following result.

6Recall from Def. 3.27 that an IMDP is a particular type of RMDP and hence, all results for RMDPs
naturally carry over to IMDPs.

5

5.5 DTSS Relations With Robust MDPs 77

Theorem 5.23 (Robust lower bound on satisfaction probability) Consider a
DTSS S = (-,* , G� , e, 5) with a reach-avoid specification i = (-) , -* , ℎ), and
let M' = ((,�2C, B� ,P) be an RMDP with () , (* ⊆ (. Suppose there exists
a strict single-valued binary relation ' ⊆ - × (such that M' �alt

'
S and

(() , (*) �' (-) , -*). Then, for every Markov scheduler f ∈ SM'

Markov for RMDP
M' , there exists a Markov policy ` as in Def. 4.6 such that

min
g∈TMarkov

PrM'
f,g (B� |= ¬(* U≤ℎ ()) ≤ PrS` (G� |= i) . (5.11)

Proof. Fix any nature ḡ ∈ T
M'

Markov for the RMDP. From Lemma 3.32 (the RMDP
sandwich lemma), it follows that for all RMDP schedulers f ∈ S

M'

Markov ⊆ SM' , it
holds that

min
g∈TM'

Markov

PrM'
f,g (B� |= ¬(* U≤ℎ ()

)
≤ PrM'

f,ḡ (B� |= ¬(* U≤ℎ ()
)

= PrMf (B� |= ¬(* U≤ℎ ()),
(5.12)

whereM is the MDP induced by applying nature ḡ to RMDPM' . From Lemma 5.21,
we know that there exists a nature g ∈ TM'

Markov such that the induced MDP satisfies
M �' S. Thus, we can choose ḡ to be the nature such thatM �' S holds. From
Corollary 5.14 we know thatM �' S and (() , (*) �' (-) , -*) implies that there
exists a Markov policy ` such that

PrMf (B� |= ¬(* U≤ℎ ()) ≤ PrS` (G� |= i) . (5.13)

By combining Eq. (5.12) with Eq. (5.13), we obtain

min
g∈TMarkov

PrM'
f,g

(
B� |= ¬(* U≤ℎ ()

)
≤ PrMf

(
B� |= ¬(* U≤ℎ ()

)
≤ PrS`

(
G� |= i

)
,

which equals Eq. (5.11), so we conclude the proof. �

While the proof above is straightforward, Theorem 5.23 will prove to be a powerful
tool in later chapters to construct RMDP (or in fact IMDP) abstractions of DTSSs.

5.5.3 Markov policy synthesis with RMDPs
All that is left to solve the DTSS synthesis problem in Problem 5.2 is to derive the Markov
policy for which the probabilistic alternating simulation relation is preserved. First, we
extend the interface function from Def. 5.15 to match the conditions of the probabilistic
alternating simulation relation.

Definition 5.24 (Robust interface function) A robust
interface
function

robust interface function for a
probabilistic alternating simulation relation ' ⊆ - × ((between RMDP M'

and DTSS S) and a Markov scheduler f ∈ SMMarkov is a set-valued map �̃f
'
: - ×

78 5 Probabilistic Simulation Relations

{0, . . . , ℎ − 1} → 2* , which is defined for all G ∈ - and : ∈ {0, . . . , ℎ − 1} as

�̃f' (G, :) =
{
D ∈ * : ∀B′ ∈ (, P(B, f: (B)) (B′) 3

∫
R=
1'−1 (B′) (b) ·) (3b | G,D)

}
,

where B ∈ (is such that (G, B) ∈ ', and) is the stochastic kernel of DTSS S.

Finally, we show that, by defining the robust interface function for the RMDP, we can
compute a Markov policy for the DTSS for which the satisfaction probability is at least
the (robust) satisfaction probability of the RMDP.

Corollary 5.25 (Robust Markov policy synthesis) Let S = (-,* , G� , e, 5) be a
DTSS with a reach-avoid specification i = (-) , -* , ℎ), and letM' = ((,�2C, B� ,P)
be an RMDP with () , (* ⊆ (. Suppose there exists a strict single-valued binary
relation ' ⊆ - × (such that M' �alt

'
S and (() , (*) �' (-) , -*). Let ` =

(`0, `1, `2, . . .) be the Markov policy defined for all G ∈ - and : ∈ {0, . . . , ℎ − 1} as

`: (G) ∈ �̃f' (G, :),

where �̃f
'
is a robust interface function for ' and f ∈ SM'

Markov. Then, it holds that

min
g∈TMarkov

PrM'
f,g (B� |= ¬(* U≤ℎ ()) ≤ PrS` (G� |= i). (5.14)

Proof. We prove the theorem by showing that Theorem 5.23 holds for any policy
that satisfies `: (G) ∈ �̃f' (G, :). Specifically, Theorem 5.23 holds for any policy that
preserves the probabilistic alternating simulation relation. Thus, we need to show that

`: (G) ∈ �̃f' (G, :) =⇒ ∀B′ ∈ (, P(B, f: (B))(B′) 3
∫
R=
1'−1 (B′) (b) ·) (3b | G,D),

which is satisfied by construction of the robust interface function in Def. 5.24. �

We will use Theorem 5.23 and Corollary 5.25 to derive several main results in the next
two chapters. In particular, by defining an RMDP such that Theorem 5.23 holds, we can
use Corollary 5.25 to define an appropriate robust interface function for any scheduler
for the RMDP, such that the lower bound on the satisfaction probability carries over.

5

5.5 DTSS Relations With Robust MDPs 79

Summary

î The lower bound control problem for a DTSS asks for a Markov policy
such that the reach-avoid specification is satisfied with at least a certain
probability (or return that no such policy could be found).

î We have developed a framework to compute a Markov policy together with
a lower bound on the probability of satisfying the specification.

î Probabilistic simulation relations allow us to compute such DTSS Markov
policies based on a finite MDP abstraction.

î Similarly, by defining the notion of a probabilistic alternating simulation
relation, we can weaken the requirements on this finite-state abstraction
and instead consider RMDPs abstractions.

6

81

6 Reach-Avoid Control of Linear DTSSs
Summary | In this chapter, we zoom in on a class of discrete-time stochastic systems
(DTSSs) where the transition function is linear in the state, control input, and stochastic
noise. For this class of linear DTSSs, we present a tractable Markov decision process
(MDP) abstraction method that induces a probabilistic simulation relation. However,
computing the transition probabilities of this MDP exactly is not possible in general.
Moreover, the common assumptions that the noise distributions of DTSSs are known
and/or Gaussian are unrealistic in practice. Thus, we drop these assumptions and
instead use sampling-based techniques from the scenario approach to compute probably
approximately correct (PAC) bounds on the transition probabilities of the abstract MDP.
We use these bounds to formalize the abstraction as an interval Markov decision process
(IMDP), for which the results from Chapter 5 for robust Markov decision processes
(RMDPs) naturally carry over. Based on our abstraction method, we present an algorithm
to solve the lower bound control problem introduced in Chapter 5. Furthermore, we
investigate how the stability of a DTSS may be exploited to reduce the size of abstract
models while retaining the correctness guarantees.

Origins | This chapter is based on the following publications:
[1] Badings, Abate, Jansen, Parker, Poonawala and Stoelinga (2022) ‘Sampling-Based

Robust Control of Autonomous Systems with Non-Gaussian Noise’. AAAI.
[7] Badings, Romao, Abate, Parker, Poonawala, Stoelinga and Jansen (2023) ‘Robust

Control for Dynamical Systems with Non-Gaussian Noise via Formal Abstractions’. J.
Artif. Intell. Res.

[10] Badings, Romao, Abate, and Parker (2024) ‘Exploiting Stability for Abstractions of
Stochastic Dynamical Systems’. ECC.

Specifically, most content originates from [1] and the later journal publication [7]. The
idea of exploiting stability to generate smaller abstractions originates from [10].

Background | We assume the reader is familiar with MDPs (Def. 3.1) and IMDPs
(Def. 3.27), and with computing optimal schedulers for reach-avoid probabilities. To
capture stochastic uncertainty in models, we build upon the probability-theoretic defini-
tions from Sect. 2.3. We also use the results from Chapter 5 on probabilistic (alternating)
simulations to prove the correctness of (I)MDP abstractions.

6.1 Linear DTSS
In Chapter 5, we have established that the existence of a probabilistic simulation relation
between a discrete-time stochastic system (DTSS) and a Markov decision process (MDP)
leads to a Markov policy together with a lower bound on the probability of satisfying a

82 6 Reach-Avoid Control of Linear DTSSs

reach-avoid specification (and thus solving Problem 5.2). Furthermore, we have discussed
how to use this result in a sound but not complete method for computing a Markov policy
that satisfies a reach-avoid specification with a desired threshold probability. We called
this problem the lower bound control problem.

However, the dynamics of a DTSS as defined by Def. 4.2 may, in general, be highly
nonlinear or even discontinuous, in which case it is intractable to actually find an MDP
that induces a probabilistic simulation relation with the DTSS. In this chapter, we thus
zoom in on a particular class of DTSSs for which solving the lower bound control
problem is tractable. Specifically, we consider DTSSs with a transition function that is
linear in the state, control input, and stochastic noise. Such DTSSs are commonly called
linear. Recall from Def. 4.2 that G: , D: , and e: are the state, control input, and stochastic
noise at time step : , respectively. Then, we define a linear DTSS as follows.

Definition 6.1 (Linear DTSS) A DTSS S = (-,* , G� , e, 5) islinear DTSS linear if the state
transition function 5 is linear, i.e., can be written in the form

5 (G,D, e) = �G + �D + @ + e, (6.1)

where � ∈ R=×= , � ∈ R=×< , and @ ∈ R= are of appropriate size.

The matrix � is called the system matrix and models how the state G:+1 at step : + 1
depends (linearly) on the state G: . Similarly, the matrix � is called the input matrix and
models how G:+1 depends (linearly) on the control input D: .

To ensure that the set of reachable states is closed under the state transition function
5 , we take - B R= as the state space in this chapter and write R= instead of - where
convenient. Recall from Sect. 4.2.2 that) denotes the stochastic kernel associated with
the DTSS, which in the linear case is defined for each + ∈ B(R=) as1.

) (+ | G,D) = P
{
l ∈ Ω : �G + �D + @ + e: (l) ∈ +

}
. (6.2)

6.1.1 Assumptions
In addition to Assumption 4.4 (the stochastic noise is i.i.d.) and Assumption 4.10 (the
target and unsafe sets of the reach-avoid specification are disjoint), we make the next
assumptions on the noise e .

Assumption 6.2 (Noise has density) The Radon-Nikodym derivative of the prob-
ability measure P of the process noise e = (e:):∈N with respect to the Lebesgue
measure exists.

Assuming the existence of the Radon-Nikodym derivative is quite standard in probability
theory and means that the process noise e has density [Dur10]. Intuitively, Assump-
tion 6.2 implies that the probability) (+ | G: , D:) for G:+1 to be contained in the Borel set
+ ∈ B(-) can be nonzero only if + has nonzero volume. Consequently, the probability
for G:+1 to lie on any subspace of- is zero (as any subspace has volume zero). In practice,
this assumption rules out anomalous cases in which there is a nonzero probability for
1Recall fromAssumption 4.10 that the stochastic noise is assumed independent and identically distributed
(i.i.d.), so the kernel) is time-invariant and thus equal for all time steps :

6

6.1 Linear DTSS 83

: 1

<

D (C)

Figure 6.1: Mass-spring damper circuit with mass<, spring stiffness : , damping coeffi-
cient 1, and control input D (C) perturbed by a disturbance E (C).

drawing two values l,l ′ ∈ Ω according to P for which e: (l) = e: (l ′), i.e., the noise
has exactly the same value (we will need this assumption in Sect. 6.3).

Assumption 6.3 (Polytopic input space) The control input space * is a convex
polytope* = {D ∈ R< : �D ≤ 6} ⊂ R< , where � ∈ R@×< and 6 ∈ R@ .

Finally, we also make the following assumption on the dynamics of the linear DTSS.

Assumption 6.4 (Non-singular and controllable) The matrix � ∈ R=×= is non-
singular. Furthermore, the matrix pair (�, �) is controllable, i.e., the matrix

C =
[
� �� · · · �=−1�

]
has full row rank, i.e., rank (C) = =.

The controllability assumption requires that each column of the matrix C is linearly
independent, which is needed for our backward reachability analysis. Controllability is
a standard assumption in control theory, which roughly ensures that the system’s state
can be steered to any desired state in a finite number of steps.

Matrix � being non-singular implies that its inverse �−1 exists, which we need in
our abstraction procedure (to perform backward reachability analysis on the DTSS; see
Sect. 6.2). This non-singularity assumption is less standard and can be seen as “the price
we pay” to be able to use backward reachability analysis to construct abstractions.

Themass-spring-dampermodel | Many physical systems can bemodeled as a linear
DTSS, where the transition function can often be derived from differential equations, as
illustrated by the following example.

Example 6.5 Fig. 6.1 shows a classical mass-spring-damper model consisting of a
point-mass connected to a spring and a damper. The spring force is proportional
(with stiffness : > 0) to the displacement ? ∈ R of the mass, and the viscous damping
force is proportional (with coefficient 1 > 0) to the velocity E = ¤? ∈ R of the mass.
At time C ∈ R, an actuator exerts a force of D (C) ∈ * ⊂ R on the mass. The evolution
of the state variables G = [?, E]> ∈ R2 for the mass-spring-damper is described by
the following system of first-order stochastic differential equations:

¤G (C) =
[
¤?
¤E

]
=

[
¤?
¥?

]
=

[
0 1
− :
<
− 1
<

]
G (C) +

[
0
1
<

]
D (C),

84 6 Reach-Avoid Control of Linear DTSSs

A simple discretization of this continuous-time model is given by the (forward)
Euler method. Moreover, we want to account for the fact that the desired control
input cannot be realized exactly (due to actuator noise). We model this noise as an
additive stochastic disturbance to the input, such that the actual force exerted at
time step : is D: + e: , where we assume that e: is i.i.d. and normally distributed
(thus satisfying Assumptions 4.4 and 6.2). As such, for a step size of XC ∈ R>0, we
obtain a DTSS with the linear transition function

G:+1 = G: + XC
([

0 1
− :
<
− 1
<

]
G: +

[
0
1
<

]
D: + e:

)
=

[
1 XC

−XC:

<
1 − XC1

<

]
G: +

[
0
XC
<

]
D: + XCe: = �G: + �D: + ẽ: ,

where ẽ: is normally distributed with appropriate covariance, and � and � are
matrices of appropriate size as defined in Def. 6.1.

6.1.2 Problem statement
We formalize the problem that we solve in this chapter, which deviates from Problem 5.2
only in that it is tailored to linear DTSSs. Recall from Def. 4.11 that PrS` (G� |= i) denotes
the probability that the execution of DTSS S satisfies the reach-avoid specification i
(see Def. 4.9) under the Markov policy ` (see Def. 4.6).

Problem 6.6 (Lower bound control for linear DTSS) Given a linear DTSS S =

(-,* , G� , e, 5), a reach-avoid specification i = (-) , -* , ℎ), and a desired threshold
probability d ∈ [0, 1], compute a Markov policy ` such that

PrS` (G� |= i) ≥ d,

or return False if no such policy could be found.

Outline | Wewill use the framework presented in Chapter 5 to solve Problem 6.6 in the
following way. First, in Sect. 6.2, we present an algorithm to generate an abstraction of
a linear DTSS in the form of an MDP. This abstraction leads to a probabilistic simulation
relation (as per Def. 5.9) from the MDP to the DTSS, which (as discussed in Sect. 5.4)
leads to a Markov policy that solves Problem 6.6.

However, computing the transition probabilities of this MDP requires integrating over
the stochastic process noise, which is often intractable. Thus, in Sect. 6.3, we estimate
these transition probabilities as intervals and represent the abstraction as an interval
Markov decision process (IMDP), leading to a probabilistic alternating simulation relation
(as per Def. 5.19). Each of these intervals contains the precise transition probability with
a user-specified confidence probability.

In Sect. 6.4, we present an algorithm that uses this IMDP abstraction to solve Prob-
lem 6.6 with high confidence. In Sect. 6.5, we propose a method to reduce the size
of abstractions significantly, and in Sect. 6.6, we demonstrate the applicability of our
approach on several benchmarks. Finally, we survey related work in Sect. 6.7 and discuss
open challenges in Sect. 6.8.

6

6.2 MDP Abstraction of Linear DTSS 85

6.2 MDP Abstraction of Linear DTSS
We present an algorithm to generate an MDP abstractionabstractionM = ((,�2C, B� , %) of a linear
DTSS. First, we partition a compact subsetZ of the state space - B R= into a finite set
of convex polytopes. We add an additional element to the partition representing R= \Z
to ensure that the partition covers the entire state space R= . Thereafter, we define the
states, actions, and transition probabilities of the MDP abstraction.

Definition 6.7 (Partition) A polyhedral partitionpartition Ψ B {V1, . . . , V!,R
= \ Z} of a

compact subsetZ ⊂ R= is a finite collection of sets such that
1. Each V8 is a convex polytope, i.e., V8 = {G ∈ R= : �8G ≤ 18 } for �8 ∈ Rb8×= ,
18 ∈ Rb8 , and b8 ∈ N;

2. The union of the regions coversZ, i.e.,Z =
⋃!

8=1V8 ;
3. The interiors of all regions are disjoint, i.e., int(Vi)

⋂
int(Vj) = ∅, ∀8, 9 ∈

{1, . . . , !}, 8 ≠ 9 .

A partition Ψ induces the following binary relation.

Definition 6.8 (Induced relation) A partition Ψ induces a strict single-valued
binary relation ' ⊆ R= × Ψ such that '(G) ∈ {V ∈ Ψ : G ∈ V} for all G ∈ R= .

Formally, Def. 6.7 is not a proper partition because the boundaries between elements
can be contained in multiple sets. As a result, the induced binary relation is not unique
for states G ∈ R= precisely on the boundary of a partition element V ∈ Ψ, i.e., for
G ∈ closure(V) \ int(V). For such a state G that is precisely on the boundary between
multiple partition elements, we arbitrarily choose one of these regions as being related
to state G . However, due to Assumption 6.2, the probability for the DTSS state G to lie
exactly on the boundary of any partition elementV ∈ Ψ is zero. Thus, this arbitrary
choice will not affect the correctness of our algorithm.

Remark 6.9 (Equivalence classes) Another common way to denote the partition
element '(G) related to a state G ∈ R= is to use the common equivalence class
notation [G]' . Here, we instead use the notation based on ' and '−1. However,
both notations are equivalent.

States | The states of the MDP abstraction are the elements of the partition Ψ, that
is, (B Ψ = {V1, . . . , V!,R

= \ Z}. This definition of the MDP states is also depicted by
Fig. 6.2. Thus, each state B ∈ (is also a subset ofR= . The initial MDP state B� B '(G�) ∈ (
is the partition element that contains G� . We call the MDP state associated with the
partition element R= \ Z the absorbing

state
absorbing state.

Remark 6.10 (Relation with discrete states) Since, (B Ψ, we can replace the
partition Ψ in Def. 6.8 by the MDP states (, which results in the binary relation
' ⊆ R= ×(. As per Def. 5.3, '(G) ∈ (is the (unique) MDP state that contains G ∈ R= ,
whereas '−1(B) ⊂ R= is the set of DTSS states related to B ∈ (.

86 6 Reach-Avoid Control of Linear DTSSs

Figure 6.2: We partition a compact subsetZ ⊂ R= into a finite set of convex polytopes
(dashed boxes). Furthermore, we define the MDP target states () as an
underapproximation of -) (green boxes), and we define the MDP unsafe
states (* as an overapproximation of -* (red boxes).

Target and unsafe states | Let -) ⊂ R= and -* ⊂ R= be the target and unsafe sets
of the reach-avoid specification for the DTSS under study. We choose () and (* such
that the resulting MDP reach-avoid specification is consistent with the specification
for the DTSS, as defined in Def. 5.5. More precisely, recall from Def. 5.5 that these
specifications are consistent, denoted by (() , (*) �' (-) , -*), if

1() (B) ≤ 1-)
(G) and 1(* (B) ≥ 1-*

(G) ∀(G, B) ∈ '. (6.3)

Thus, we choose () and (* exactly such that Eq. (6.3) holds, i.e.,

() = {B ∈ (: ∀(G, B) ∈ ', G ∈ -) } and
(* = {B ∈ (: ∃(G, B) ∈ ', G ∈ -* } .

(6.4)

Essentially, Eq. (6.4) means that the MDP underapproximates the target states and
overapproximates the unsafe states of the DTSS, such that (() , (*) �' (-) , -*) holds
as per Def. 5.5. This procedure is also depicted by Fig. 6.2. Note that, if the tar-
get states -) and unsafe states -* are exactly described by a union of partition ele-
ments {V1, . . . , V!,R

= \ Z}, then the resulting specifications are even equivalent as
per Def. 5.5, i.e., (() , (*) ≡' (-) , -*).

Actions | Actions in the abstraction correspond to executing control inputs D: ∈ *
in the DTSS. We define @ ∈ NMDP actions in total, so �2C B {01, . . . , 0@}, @ ∈ N. Every
action 0 is associated with a fixed continuoustarget point target point 30 ∈ - defined on the state
space of the DTSS. While not a restriction of our approach, it is often convenient to
define one action for every MDP state B ∈ ((except for the absorbing state) and choose
the target point to be the center of the corresponding partition element.2

Choosing an MDP action 0 ∈ �2C corresponds with choosing a control input D ∈ * in
the DTSS such that, when we neglect the stochastic noise e , the successor state of the
DTSS is exactly the target point 30 . To capture this intution, we define thebackward

reachable
set

backward
reachable set reach−1(30) for every target point 30 , 0 ∈ �2C , as the set of all DTSS states

2If this choice results in an MDP that is too large, we may reduce the number of actions. If, on the other
hand, a more refined abstraction is required, we may define additional actions.

6

6.2 MDP Abstraction of Linear DTSS 87

reach−1 (30)

'−1 (B′)

'−1 (B)
30

Figure 6.3: A part of a partition of Z ⊂ R2, showing the backward reachable set
reach−1(30) of an action 0 ∈ �2C with target point 30 . Action 0 is enabled in
states B and B′, since '−1(B) ⊆ reach−1(30) and '−1(B′) ⊆ reach−1(30).

from which 30 can be reached in one step:

reach−1(30) = {G ∈ R= : ∃D ∈ * . 30 = �G + �D + @},

Now, let the control input space * = conv(E1, . . . , E@), @ ∈ N, be given in its vertex
representation, which is possible because * is assumed to be a convex polytope (see
Assumption 6.3). Due to the linearity of the dynamics and Assumption 6.4 (invertibility
of �), we rewrite the backward reachable set as

reach−1(30) = conv
(
�−1(30 − �E8 − @) : 8 = 1, . . . , @

)
. (6.5)

Intuitively, we enable an action 0 ∈ �2C in MDP state B ∈ (if and only if the set '−1(B)
is contained in reach−1(30). Thus, the subset �2C (B) ⊆ �2C of actions enabled in the
MDP state B ∈ (is

�2C (B) =
{
0 ∈ �2C | '−1(B) ⊆ reach−1(30)

}
. (6.6)

As an example, Fig. 6.3 shows the backward reachable set of an action 0 ∈ �2C , which
contains regions '−1(B) and '−1(B′). Hence, this action is enabled in states B and B′.

Transition probabilities | From Eq. (6.5), we observe that each MDP action 0 ∈ �2C
is defined such that 30 = �G: + �D: + @, which holds for D: ∈ �†(30 −�G: − @).3 Due to
Eq. (6.6), we have D: ∈ �†(30 −�G: −@) ⊆ * by construction for any DTSS state G: ∈ -
for which 0 ∈ �2C ('(G:)). Since the noise is additive, the actual successor state is then
G:+1 = 30 + e: , which is a random variable with distribution) (· | G: , �†(30 −�G: − @)),
where) is the stochastic kernel as introduced in Sect. 4.2.2. As a result, for every B ∈ (,
0 ∈ �2C (B), and B′ ∈ (, we define the transition probability % (B, 0) (B′) as

% (B, 0) (B′) =
∫
R=
1'−1 (B′) (b) ·) (3b | G, �†(30 −�G − @))

= P
{
l ∈ Ω : 30 + e: (l) ∈ '−1(B′)

}
.

(6.7)

3Recall that �† denotes the pseudoinverse of �.

88 6 Reach-Avoid Control of Linear DTSSs

'−1
B

D0

Figure 6.4: The forward abstraction method fixes a control inputD0 ∈ �2C for each action
0 ∈ �2C and computes forward reachable sets by propagating '−1(B), B ∈ (
through the dynamics under the input D0 .

Remark 6.11 (Backward vs. forward methods) Most abstraction methods as-
sociate each abstract action 0 ∈ �2C with a fixed control input D0 ∈ * and compute
the forward reachable set associated with this input. We call this type of abstraction
procedures forward methods. By contrast, we call our method based on backward
reachability analysis a backward method. Using backward reachability is a key
novelty of our approach that makes it distinct from other abstraction techniques.

As illustrated in Fig. 6.4, using the forward method, the distribution over DTSS
states G:+1 associated with an MDP action 0 ∈ �2C depends on the precise state G:
where the action is chosen. By contrast, for every action 0 ∈ �2C , our backward
method leads to the same distribution) (· | G: , �†(30 −�G: − @)) over DTSS states,
independent of where the action is chosen.

However, computing backward reachable sets (especially for nonlinear systems)
is more challenging than computing forward reachable sets. In the linear case,
our backward method requires the system matrix � to be non-singular and the
pair (�, �) to be controllable (Assumption 6.4), which is not needed for computing
forward reachable sets. Thus, which of the two methods is better suited depends on
the situation at hand.

Complete MDP | We now put all elements from the preceding paragraphs together.
Given a partition Ψ and its induced binary relation ' ⊆ R= × Ψ, we define the MDP
abstractionM = ((,�2C, B� , %) with:

• Set of states (B Ψ = {V1, . . . , V!,R
= \ Z}, with initial state B� B '(G�) ∈ (, and

the set of target states () and unsafe states (* as per Eq. (6.4);
• Set of actions �2C B

{
01, . . . , 0@

}
for some @ ∈ N, with the enabled actions �2C (B)

defined by Eq. (6.6) for all B ∈ (;
• For all B, B′ ∈ (and 0 ∈ �2C (B), the probability % (B, 0) (B′) is defined by Eq. (6.7).

Remark 6.12 (Number of transition probabilities of the MDP) For a given
action 0 ∈ �2C and successor state B′ ∈ (, the transition probability % (B, 0) (B′)
is equal for all MDP states B for which 0 ∈ �2C (B). In other words, for any two
states B, B̃ ∈ (and an action 0 for which 0 ∈ �2C (B) and 0 ∈ �2C (B̃), we have that

6

6.2 MDP Abstraction of Linear DTSS 89

% (B, 0) (B′) = % (B̃, 0) (B′) for all B′ ∈ (. Thus, the MDP has at most |�2C | · |(| unique
transition probabilities (rather than at most |(| · |�2C | · |(| probabilities), which
reduces the complexity of generating abstractions.

6.2.1 Relation induced by the abstract MDP
We close this section by showing that the abstract MDPM induces a probabilistic

simulation
relation

probabilistic simu-
lation relation, which means that we can use the MDP abstraction to solve Problem 6.6
using the framework presented in Chapter 5.

Proposition 6.13 (Pobabilistic simulation relation) The induced binary rela-
tion ' ⊆ R= × (is a probabilistic simulation relation from the abstract MDPM to
the DTSS S, i.e.,M �' S.

Proof. First, observe that the initial states G� and B� are related by definition. Second,
observe that Eq. (6.7) satisfies the requirements on the relation� ⊆ Distr(-)×Distr(()
in Def. 5.9. Thus, both requirements for a probabilistic simulation relation in Def. 5.9
are satisfied. �

Moreover, the following lemma shows how to find an interface function (as defined
by Def. 5.15) for the induced relation ' betweenM and S. The intuition is that we
restrict the DTSS control inputs to precisely those D ∈ * that preserve the probabilistic
simulation relation, which is the case if 30 = �G + �D + @.

Lemma 6.14 (Interface function) Let ' ⊆ R= × (be the probabilistic simulation
relation from abstractMDPM to DTSSS, and letf ∈ SMMarkov be aMarkov scheduler.
The function �f

'
: - × {0, . . . , ℎ − 1} → 2* defined for all G ∈ - and for all : ∈

{0, . . . , ℎ − 1} as

�f' (G, :) B
{
D ∈ * : 30 = �G + �D + @, 0 = f: (B), (G, B) ∈ '

}
is an interface function for the relation ' as defined by Def. 5.15.

Proof. Let Ḡ ∈ - and :̄ ∈ {0, . . . , ℎ − 1}. To prove that �f
'
is an interface function, we

must show that, for all control inputs D ∈ �f
'
(Ḡ, :̄) in the interface, it holds that

∀B′ ∈ (, % (B, f:̄ (B)) (B′) =
∫
R=
1'−1 (B′) (b) ·) (3b | Ḡ, D) .

From the definition of the MDP transition probabilities in Eq. (6.7), we have that

∀B′ ∈ (, % (B, f:̄ (B)) (B′) =
∫
R=
1'−1 (B′) (b) ·) (3b | Ḡ, �†(3f:̄ (B) −�G − @))

=

∫
R=
1'−1 (B′) (b) ·) (3b | Ḡ, D̄),

for any D̄ ∈ �f
'
(G, :). Thus, it follows that �f

'
(G, :) is an interface function. �

90 6 Reach-Avoid Control of Linear DTSSs

Remark 6.15 (The interface is independent from the noise) Observe that the
interface function �f

'
is independent of the stochastic noise e . This independence is a

crucial property of the interface function because it will allow us to solve Problem 6.6
even if the distribution of the noise is unknown.

Recall from Theorem 5.17 that by restricting the DTSS Markov policy to the interface
function �f

'
(G, :), the satisfaction probability of f on the MDP carries over as a lower

bound to the DTSS. In mathematical terms, Theorem 5.17 implies that, for all MDP
schedulers f ∈ SMMarkov and for `: (G) ∈ �f' (G, :), : ∈ {0, . . . , ℎ − 1}, it holds that

PrMf (B� |= ¬(* U≤ℎ ()) ≤ PrS` (G� |= i).

Now, recall that Problem 6.6 asks for a Markov policy ` such that PrS` (G� |= i) ≥ d .
Thus, if we find that an optimal4 MDP scheduler has a satisfaction probability of at
least d , then we can, by construction, compute a DTSS Markov policy which also has a
satisfaction probability of at least d . If, on the other hand, the satisfaction probability on
the MDP is below d , then we either need to improve the abstraction5 or conclude that we
could not solve Problem 6.6 (and thus return False). Thus, our MDP abstraction yields a
solution to the lower bound control problem for linear DTSS described in Problem 6.6.
We present a more concrete algorithm in Sect. 6.4.

Remark 6.16 (Integration of the stochastic kernel) Even though the interface
function is independent of the stochastic noise, the MDP’s transition probabilities
in Eq. (6.7) are defined in terms of integrals of the stochastic kernel) . Computing
these integrals exactly is possible for simple (e.g., triangular) distributions but is
often infeasible for more complex distributions. Moreover, distributions may not be
precisely known (or even unknown) at all. Thus, whether we can compute the MDP
abstraction in practice (and thus use Lemma 6.14 to solve Problem 6.6) depends on
the noise distribution of the DTSS at hand.

6.3 Sampling-Based Probability Intervals
A common assumption to achieve computational tractability is that the process noise
is Gaussian [PSQ13], e.g., as is classically assumed in linear-quadratic-Gaussian con-
trol [AM90]. However, in realistic problems, such as a UAV operating under turbulence,
this assumption yields a poor approximation of the uncertainty [BOBW10]. Distribu-
tions may even be unknown, meaning that one cannot derive a set-bounded or a precise
probabilistic representation of the noise. Motivated by these examples, we drop the
common assumption that the distribution of the process noise e is known.

Assumption 6.17 (Noise distribution unknown) The probability measure P of
the stochastic process e = (e:):∈N of the DTSS S = (-,* , G� , e, 5) is unknown.

Assumption 6.17 prevents us from computing the MDP transition probabilities via
Eq. (6.7). In this section, we describe our sampling-based method proposed in [1; 7]
4In fact, this result holds for any MDP scheduler, but in practice, we will work with optimal schedulers.
5We will discuss ways to improve the MDP abstraction in Sect. 6.4.

6

6.3 Sampling-Based Probability Intervals 91

to estimate the transition probabilities using intervals. In a nutshell, we will leverage
Assumptions 4.4 and 6.2, which respectively state that the noise is independent and
identically distributed, and has a probability density function. Then, we assume access
to a finite set of # ∈ N i.i.d. observations of the process noise, e (1)

:
, . . . , e

(#)
:

, each of
which is a realization e: (l) ∈ Ve of the noise for some l ∈ Ω drawn according to P.

With slight abuse of notation, we can regard the set of samples e (1)
:
, . . . , e

(#)
:

to be
an element from the probability space Ω# equipped with the product probability P#

and the product Borel f-algebra B(Ω#).6 For a fixed action 0 ∈ �2C , each sample e (8)
:

,
8 = 1, . . . , # , is associated with a possible successor state G (8)

:+1 = 30 + e
(8)
:

. As such, we
can generate these samples by inferring the process noise from state trajectories of
the DTSS, or we may sample from the noise distribution directly (e.g., if a simulator is
available). Thus, in our setting, noise samples can be obtained at a relatively low cost.

A frequentist approach to estimation | As an example, we want to estimate the
probability % (B, 0) (B′) that choosing action 0 ∈ �2C (B) in state B ∈ (leads to a transition
to state B′ ∈ (. Naturally, we can approximate this probability as the number of samples
in
0,B′ ≤ # leading to a transition to state B′, divided by the total of # samples. This

approach is known as a frequentist approach and is statistically justified by the strong
law of large numbers. Concretely, the value of # in

0,B′ is obtained as follows.

Definition 6.18 (Sample counts) The number of samples # in
0,B′ ∈ {0, . . . , # } lead-

ing to a successor state G:+1 ∈ '−1(B′) associated with the MDP state B′ ∈ (is

in
0,B′ B

���{8 ∈ {1, . . . , # } : (30 + e (8):
) ∈ '−1(B′)

}���. (6.8)

Similarly, # out
0,B′ = # − # in

0,B′ is the number of samples for which 30 + e (8):
∉ '−1(B′).

The frequentist approach is simple but may lead to estimates that deviate critically
from their true values if the number of samples is limited (we illustrate this issue in the
UAV experiment in Sect. 6.6.1). In what follows, we discuss how to render our method
robust against such estimation errors.

6.3.1 Bounds for the transition probabilities
We present a method based on the scenario

approach
scenario approach [CG18a] to compute intervals of

probabilities instead of precise estimates. Specifically, for every transition (B, 0, B′), we
compute an upper and lower bound, i.e., an interval, that contains % (B, 0) (B′) defined by
Eq. (6.7) with a user-specified (high) confidence probability. We represent the resulting
abstraction as an IMDP, where these intervals enter the uncertain transition function.

We first state the main contribution of this section, which is a non-trivial variant
of [RPM23, Theorem 5], adapted to our context. Specifically, for a given transition

6More formally, recall from Def. 4.2 that each sample e (8)
:

, 8 = 1, . . . , # , is an element of Ve , so the set
of samples e (1)

:
, . . . , e

(#)
:

is an element of V#
e , whose probability measure a defined uniquely by the

pushforward of the product measure P# under e . This interpretation coincides with ours in practice,
so we simplify notation and say that e (1)

:
, . . . , e

(#)
:

is an element of (Ω# , B(Ω#), P#) .

92 6 Reach-Avoid Control of Linear DTSSs

(B, 0, B′) and the resulting number of samples # out
0,B′ outside of region '−1(B′) (as per

Def. 6.18), Theorem 6.19 returns an interval [?̌, ?̂] that contains % (B, 0) (B′) with at least
a pre-defined confidence probability 1 − V ∈ (0, 1).

Theorem 6.19 (PAC probability intervals) Let e (1)
:
, . . . , e

(#)
:

be a set of # ∈ N
samples of the noise e: , and let V ∈ (0, 1) be a confidence parameter. Furthermore,
let 0 ∈ �2C and B′ ∈ (be a state and action of the abstract MDPM = ((,�2C, B� , %),
respectively, and determine the value of # out

0,B′ . Then, for any B ∈ (such that
0 ∈ �2C (B), the transition probability % (B, 0) (B′) is bounded by

P#
{
(e (1)

:
, . . . , e

(#)
:
) ∈ Ω# : ?̌ ≤ % (B, 0) (B′) ≤ ?̂

}
≥ 1 − V, (6.9)

where ?̌ = 0 if # out
0,B′ = # , and otherwise ?̌ is the solution of

V

2#
=

out
0,B′∑
8=0

(
#

8

)
(1 − ?̌)8 ?̌#−8 , (6.10)

and ?̂ = 1 if # out
0,B′ = 0, and otherwise ?̂ is the solution of

V

2#
= 1 −

out
0,B′−1∑
8=0

(
#

8

)
(1 − ?̂)8 ?̂#−8 . (6.11)

Theorem 6.19 states that, with a probability of at least 1 − V , the transition probability
% (B, 0) (B′) is bounded by the obtained interval [?̌, ?̂]. Importantly, this claim holds for
any probability space (Ω, F , P) for the process noise e: , : ∈ N, that satisfies the previous
assumptions, so we can bound the probability in Eq. (6.7), even when the probability
distribution of the noise is unknown.

Remark 6.20 (Beta distribution) Eqs. (6.10) and (6.11) are cumulative distribu-
tion functions of a beta distribution with parameters # out

0,B′ + 1 (or # out
0,B′) and # −# out

0,B′

(or # − # out
0,B′ − 1), respectively [CG18a], which can be solved numerically for ?̌ or ?̂

up to arbitrary precision. Thus, we can speed up computations by tabulating the
intervals for all relevant values of # , V , and # out

0,B′ upfront.

The proof of Theorem 6.19, which we provide in Sect. 6.3.3, relies on recasting the es-
timation of transition probabilities into a set of 2# optimization problems with different
numbers of constraints. To obtain probably approximately correct (PAC) intervals on
these probabilities, we use results from [RPM23] on the probability of constraint violation
on the solutions to these optimization problems. Interestingly, these optimization prob-
lems can be solved analytically based on their geometry. As a result, Theorem 6.19 only
depends on the sample count # out

0,B′ , the total number of samples # , and the confidence
parameter V . We can thus compute PAC probability intervals without explicitly solving
optimization programs. In practice, our method is as simple as the frequentist approach
but has the notable advantage that we obtain robust intervals of probabilities.

6

6.3 Sampling-Based Probability Intervals 93

Remark 6.21 (Difference to [RPM23]) The factor 1
2# on the left side in

Eqs. (6.10) and (6.11) is not present in the original result in [RPM23, Theorem 5].
As we will show in Sect. 6.3.3, we obtain this extra term because we are implicitly
considering 2# optimization problems to compute a probability interval. Dividing
the confidence V by 2# in Eqs. (6.10) and (6.11) essentially means that we force the
result from [RPM23] to hold for all of these 2# problems.

6.3.2 *The scenario approach
*Section
with details
that can
be skipped
safely

Toward the proof of Theorem 6.19, we introduce several core concepts related to the
scenario approach, largely following the exposition from [CG18a; CCG21]. We remark
that these concepts are only used for the derivation of the proof in Sect. 6.3.3, so the
reader may decide to skip directly to Sect. 6.3.4.

Scaled polytopes | Recall from Def. 6.7 that each elementV ∈ Ψ is a convex polytope
defined as V = {G ∈ R= : �G ≤ 1}, where the matrix � ∈ Rb×= and vector 1 ∈ Rb
define the b ∈ N halfspace constraints (note that � , 1, and b can be different for every
elementV ∈ Ψ). With slight abuse of notation, we defineV(_) as a version ofV ∈ Ψ
which is scaled by a factor _ ≥ 0 relative to a Chebyshev center7 Ẽ ∈ R= ofV:

V(_) B {G ∈ R= : �G ≤ _(1 − �Ẽ) + �Ẽ}. (6.12)

Note thatV(1) = V and that shifting by Ẽ ensures we scale around a point contained
in V , such that V(_1) ⊂ V(_2) for all 0 ≤ _1 < _2. Using this notation, '−1(B′) (_)
denotes a version of the partition element associated with MDP state B′ ∈ (scaled by a
factor _. A visualization of the scaling for an arbitrary region '−1(B′) associated with
a discrete successor state B′ ∈ (is shown in Fig. 6.5. In this example, the Chebyshev
center is not unique since the circle can be shifted while remaining within '−1(B′).
7Informally, a Chebyshev center of a bounded set . is the center of the largest inscribed ball of . ;

see [BV14, Section 4.3.1] for details.

'−1 (B ′)

'−1 (B ′) (1.2)

ẼB′

Figure 6.5: Polytope '−1(B′) has a Chebyshev center ẼB′ (which is not unique, as the
circle can be shifted while remaining within '−1(B′)). Polytope '−1(B′) (1.2)
is scaled by a factor _ = 1.2 and is computed using Eq. (6.12).

94 6 Reach-Avoid Control of Linear DTSSs

Remark 6.22 (Rectification) In our papers [1; 7], we defined a scaled polytope as

V(_) B {G ∈ R= : �G ≤ _(1 − Ẽ) + Ẽ}. (6.13)

Unfortunately, this original definition is incorrect (note that 1 ∈ Rb and Ẽ ∈ R=
have different dimensions). As such, Eq. (6.12) is a correction of the definition in
Eq. (6.13). Nevertheless, all further results from [1; 7] remain valid.

Scenario optimization problem | For a fixed pair 0 ∈ �2C and B′ ∈ (and a given
set of # noise samples e (1)

:
, . . . , e

(#)
:

, we formulate the following linear optimization
problem L

&

0,B′ with a scalar decision variable _ ≥ 0:

L
&

0,B′ : minimize
_≥0

_

subject to 30 + e (8):
∈ '−1(B′) (_) ∀8 ∈ {1, . . . , # } \&,

(6.14)

where & ⊂ {1, . . . , # }. Roughly speaking, solving L&

0,B′ amounts to finding the smallest
_ such that the scaled polytope '−1(B′) (_) contains 30 + e (8):

for all noise samples with
index in {1, . . . , # }\& . Intuitively, the set& is thus a subset of samples whose constraints
have been discarded from the optimization problem.

Definition 6.23 (Active constraints) Let _★ ≥ 0 be an optimal solution to prob-
lem L

&

0,B′ . We say that the constraint for noise sample e (8)
:

is active if 30 + e (8):
is on

the boundary of the scaled polytope '−1(B′) (_★), i.e., if

30 + e (8):
∈ closure(R−1(s′) (_★)) \ int(R−1(s′) (_★)) .

We denote the set of all active constraints by active(L&

0,B′) ⊂ {1, . . . , # } \& .

The next lemma states that, in our setting, there is always a single active constraint.

Lemma 6.24 (Uniqueness of active constraint) For all& ⊂ {1, . . . , # }, 0 ∈ �2C ,
B′ ∈ (, and _★ ≥ 0, the number |active(L&

0,B′) | of active constraints is one almost
surely (i.e., with probability one).

Proof. First, as {1, . . . , # } \& ≠ ∅, there is at least one active constraint (see [CG08]
for details). Second, suppose there are multiple active constraints. Then, 30 + e (8):

lies
on the boundary of '−1(B′) (_★) for multiple values 8 ∈ {1, . . . , # } \& . However, due
to Assumption 6.2, the probability for this to occur is zero, so the claim follows. �

Set of discarded samples | We use Lemma 6.24 to construct a sequence of strictly
increasing subsets&0, &1, . . . , &# ⊂ {1, . . . , # } of discarded samples, where at each step,
we add the unique active constraint from the previous solution.

6

6.3 Sampling-Based Probability Intervals 95

−2 −1 0 1 2

'−1 (B′) (_★8−1)

'−1 (B′) (_★8)

'−1 (B′)

Figure 6.6: Bounding the region '−1(B′) = [−1, 1] using # = 10 samples 30 + e (8):
,

8 = 1, . . . , 10. Discarding 8 B # out
0,B′ = 5 samples defines the red region

'−1(B′) (_★8) ⊆ '−1(B′), whereas discarding 8 − 1 samples defines the blue
region '−1(B′) (_★8−1) ⊃ '−1(B′).

Definition 6.25 (Discarded samples) The sequence of subsets &0, &1, . . . , &# ⊂
{1, . . . , # } is defined recursively, where:
1. The initial set &0 = ∅ is empty;

2. For all ℓ = 1, . . . , # , we define &ℓ = &ℓ−1 ∪ active(L&ℓ−1
0,B′).

Thus, we have that &0 ⊂ &1 ⊂ · · · ⊂ &# . Furthermore, let _★ℓ denote the optimal
solution to problem L

&ℓ

0,B′ . From Lemma 6.24, it follows that _★0 < _★1 < · · · < _★
#

with
probability one.

Under/overapproximating regions | Recall from Def. 6.18 that # out
0,B′ is the number

of samples leading to a successor state outside of region '−1(B′) for state B′ ∈ (. The
following lemma uses # out

0,B′ to define an under- or overapproximation of '−1(B′).

Lemma 6.26 (Over/underapproximating regions) Let 8 B # out
B′ ≤ # be short-

hand for the number of successor state samples outside of '−1(B′). Then, it holds
that '−1(B′) (_★8) ⊆ '−1(B′) ⊂ '−1(B′) (_★8−1).

Proof. First consider optimization problem L
&8

0,B′ with discarded samples &8 . In this
case, exactly those samples for which30+e (8):

is outside of '−1(B′) have been discarded,
so _★8 ≤ 1 and thus, '−1(B′) (_★8) ⊆ '−1(B′). Similarly, for problemL

&8

0,B′ with discarded
samples &8−1, we must have one sample outside of '−1(B′), so _★8−1 > 1 and thus,
'−1(B′) ⊂ '−1(B′) (_★8−1). This concludes the proof. �

Intuitively, for 8 B # out
B′ ≤ # , the scaled polytope '−1(B′) (_★8) contains exactly those

samples in '−1(B′), while '−1(B′) (_★8−1) additionally contains the sample closest outside
of '−1(B′), as visualized in Fig. 6.6 for a 1-dimensional example.

Risk of violation | As a final ingredient, we introduce the concept of risk (or the
violation probability), which is the probability that the DTSS state G:+1 is not in a given
subset of the state space upon choosing action 0 ∈ �2C (B) in state B ∈ ([CG08].

96 6 Reach-Avoid Control of Linear DTSSs

Definition 6.27 (Risk of violation) The risk P0 (G:+1 ∉ +) that G:+1 = 30 + e: is
not in a Borel set + ∈ B(-) upon choosing abstract action 0 ∈ �2C is defined as the
shorthand notation

P0 (G:+1 ∉ +) B P
{
l ∈ Ω : 30 + e: (l) ∉ +

}
.

Crucially, observe from Eq. (6.7) that the transition probability % (B, 0) (B′) we aim to
estimate is the complement of the violation probability over '−1(B′), i.e.,

% (B, 0) (B′) = 1 − P0 (G:+1 ∉ +) .

6.3.3 *Proof of Theorem 6.19
*Section

with details
that can be

skipped
safely

We use the ingredients from Sect. 6.3.2 to prove Theorem 6.19. The proof is adapted
from [RPM23, Theorem 5], which requires three key assumptions: (1) the scenario
problem belongs to the class of so-called fully-supported problems,8 (2) its solution is
unique, and (3) discarded samples violate the optimal solution with probability one. In
our case, (1) is satisfied as L&

0,B′ has one decision variable and one active constraint with
probability one (see Lemma 6.24). Furthermore, (2) is implied by Assumption 6.2, and
(3) is satisfied by our choice of the discarded samples via Def. 6.25.

For the remainder of the proof, we choose a fixed action 0 ∈ �2C and a state B′ ∈ (.
Under the three assumptions above, [RPM23, Theorem 5] states that, for a fixed ℓ ∈
{0, . . . , # }, the risk associated with an optimal solution _★ℓ to Eq. (6.14) for discarded
samples &ℓ satisfies the following expression:

P#
{
P0

{
G:+1 ∉ '

−1(B′) (_★ℓ)
}
≤ n

}
= 1 −

ℓ∑
8=0

(
#

8

)
n8 (1 − n)#−8 . (6.15)

Eq. (6.15) is the cumulative distribution function (CDF) �ℓ : [0, 1] → [0, 1] of a beta
distribution with parameters ℓ + 1 and # − ℓ , which is defined for all n ∈ [0, 1] as

�ℓ (n) = P#
{
P0

{
G:+1 ∉ '

−1(B′) (_★ℓ)
}
≤ n

}
= Ṽ . (6.16)

Thus, for any ℓ ∈ {0, . . . , # } and n ∈ [0, 1], Eq. (6.16) returns the confidence probability
Ṽ ∈ (0, 1) by which the probability P0

{
G:+1 ∉ '−1(B′) (_★ℓ)

}
is upper bounded by n .

Conversely, we can compute the value of n that results in a confidence probability of Ṽ ,
using the percent point function (PPF) �ℓ (Ṽ):

P#
{
P0

{
G:+1 ∉ '

−1(B′) (_★ℓ)
}
≤ �ℓ (Ṽ)

}
= Ṽ . (6.17)

The PPF is the inverse of the CDF, so by definition, we have

n = �ℓ (Ṽ) = �ℓ

(
�ℓ (n)

)
. (6.18)

8An optimization problem is fully supported if the number of active constraints is equal to the number
of decision variables with probability one. See [CG08] for a more formal definition.

6

6.3 Sampling-Based Probability Intervals 97

Since P0 (G ∈ V) + P0 (G ∉ V) = 1 for any G andV , we rewrite Eq. (6.16) as

�ℓ (n) = P#
{
P0

{
G:+1 ∈ '−1(B′) (_★ℓ)

}
≥ 1 − n

}
= Ṽ . (6.19)

By defining ? = 1 − n , Eqs. (6.18) and (6.19) are combined as

P#
{
1 −�ℓ (Ṽ) ≤ P0

{
G:+1 ∈ '−1(B′) (_★ℓ)

}
= 1 −

ℓ∑
8=0

(
#

8

)
(1 − ?)8?#−8 = Ṽ . (6.20)

Lower bound | We first prove the lower bound. There are # possible values for ℓ ,
ranging from 0 to # − 1. The case ℓ = # (i.e., all samples are discarded) is treated as a
special case in Theorem 6.19. We fix Ṽ = 1 − V

2# in Eq. (6.20), yielding the equations

P#
{
1 −�0

(
1 − V

2#

)
≤ P0

{
G:+1 ∈ '−1(B′) (_★0)

}}
= 1 − V

2#
...

... (6.21)

P#
{
1 −�#−1

(
1 − V

2#

)
≤ P0

{
G:+1 ∈ '−1(B′) (_★#−1)

}}
= 1 − V

2#
.

Denote the event that 1 −�=

(
1 − V

2#

)
≤ P0

{
G:+1 ∈ '−1(B′) (_★=)

}
for = = 0, . . . , # − 1

by A= . Regardless of =, this event has a probability of P# {A=} = 1 − V

2# , and its
complement A′= of P# {A′=} =

V

2# . Via Boole’s inequality, we know that

P#
{ #−1⋃

8=0

A′=
}
≤

#−1∑
8=0

P#
{
A′=

}
=

V

2#
=

V

2
. (6.22)

Thus, for the intersection of all events in Eq. (6.21) we have

P#
{ #−1⋂

8=0

A=

}
= 1 − P#

{ #−1⋃
8=0

A′=
}
≥ 1 − V

2
. (6.23)

After observing the samples at hand, we replace ℓ by the value of # out
0,B′ (as per Def. 6.18),

resulting in one of the expressions in Eq. (6.21). This expression holds with at least the
probability of the intersection of all events in Eq. (6.23). Thus, we obtain

P#
{
?̌ ≤ P0

{
G:+1 ∈ '−1(B′) (_★# out

0,B′
)
}}
≥ 1 − V

2
, (6.24)

where ?̌ = 0 if# out
0,B′ = # (which is a trivial lower bound), and otherwise ?̌ = 1−�# out

0,B′
(1−

V

2#) is the solution for ? to Eq. (6.20), with ℓ = # out
0,B′ and Ṽ = 1 − V

2# :

1 − V

2#
= 1 −

out
0,B′∑
8=0

(
#

8

)
(1 − ?)8?#−8 , (6.25)

98 6 Reach-Avoid Control of Linear DTSSs

which is equivalent to Eq. (6.10).

Upper bound | Eq. (6.20) is rewritten as an upper bound as

P#
{
P0

{
G:+1 ∈ '−1(B′) (_★ℓ)

}
< 1 −�ℓ (Ṽ)

}
= 1 − Ṽ, (6.26)

where ℓ ranges from 0 to # − 1. However, to obtain high-confidence guarantees on the
upper bound, we now fix Ṽ =

V

2# , which yields the series of equations

P#
{
P0

{
G:+1 ∈ '−1(B′) (_★0)

}
< 1 −�0

(V
2#

)}
= 1 − V

2#
...

... (6.27)

P#
{
P0

{
G:+1 ∈ '−1(B′) (_★#−1)

}
< 1 −�#−1

(V
2#

)}
= 1 − V

2#
.

Analogous to the lower bound case, Boole’s inequality implies that the intersection of all
expressions in Eq. (6.27) has a probability of at least 1 − V

2 . After observing the samples
at hand, we replace ℓ by # out

0,B′ − 1, yielding one of the expressions in Eq. (6.27). For this
expression, it holds that

P#
{
P0

{
G:+1 ∈ '−1(B′) (_★# out

0,B′−1
)
}
≤ ?̂

}
≥ 1 − V

2
, (6.28)

where ?̂ = 1 if # out
0,B′ = 0 (which is a trivial upper bound), and otherwise ?̂ = 1 −

�# out
0,B′−1
(V

2#) is the solution for ? to Eq. (6.20), with ℓ = # out
0,B′ − 1 and Ṽ =

V

2# :

V

2#
= 1 −

out
0,B′−1∑
8=0

(
#

8

)
(1 − ?)8?#−8 , (6.29)

which is equivalent to Eq. (6.11).

Probability interval | We invoke Lemma 6.26, which states that '−1(B′) (_★8) ⊆
'−1(B′) ⊂ '−1(B′) (_★8−1). Thus, for all B ∈ (for which 0 ∈ �2C (B), we have that

P0
{
G:+1 ∈ '−1(B′) (_★# out

0,B′
)
}
≤ P0

{
G:+1 ∈ '−1(B′)

}
= % (B, 0) (B′)

< P0
{
G:+1 ∈ '−1(B′) (_★# out

0,B′−1
)
}
.

(6.30)

We use Eq. (6.30) to write Eqs. (6.24) and (6.28) in terms of the transition probability
% (B, 0) (B′). By applying Boole’s inequality, we combine Eqs. (6.24) and (6.28) as follows:

P#
{
?̌ ≤ % (B, 0) (B′)

⋂
% (B, 0) (B′) ≤ ?̂

}
= P#

{
?̌ ≤ % (B, 0) (B′) ≤ ?̂

}
≥ 1 − V,

(6.31)

which is equal to Eq. (6.9), so we conclude the proof.

6

6.3 Sampling-Based Probability Intervals 99

25 250

2
500

0

0.2

0.4

0.6

0.8

1

Number of samples (#)

Pr
ob

ab
ili
ty

True probability
V = 10−3 (Thm. 6.19)
V = 10−9 (Thm. 6.19)
V = 10−3 (Hoeffding)
V = 10−9 (Hoeffding)

(a) As a function of the sample size.

0 200

400

600

800

0

0.2

0.4

0.6

0.8

1

Samples outside of region (# out
B′)

Pr
ob

ab
ili
ty

Fraction out (# out
0,B ′/#)

V = 10−9 (Thm. 6.19)
V = 10−9 (Hoeffding)

(b) As a function of samples outside of region.

Figure 6.7: Probability intervals from Theorem 6.19 vs. Hoeffding’s inequality.

6.3.4 Tightness of probability intervals
We investigate the tightness of the probability intervals obtained fromTheorem 6.19. We
can interpret a transition probability % (B, 0) (B′) as the probability of a Bernoulli random
variable. In this context, we may use Hoeffding’s

inequality
Hoeffding’s inequality, a well-known concentration

inequality, to infer PAC bounds on this probability [BLM13]. In particular, given #
successor state samples of which # in

0,B′ are contained in region '−1(B′), Hoeffding’s
inequality states that, for any V ∈ (0, 1), it holds that

P#

{
in
0,B′

#
− Y ≤ % (B, 0) (B′) ≤

in
0,B′

#
+ Y

}
≥ 1 − V,

where Y =
√

1
2# log(2

V
). In what follows, we evaluate the tightness of our intervals

obtained from Theorem 6.19, versus those obtained from Hoeffding’s inequality.

Number of noise samples# | To illustrate how the choice for the number of samples
affects the tightness of the intervals, consider a system with a 1-dimensional state
G: ∈ R, where the distribution over successor states for a specific action 0 ∈ �2C with
target point 30 is given by a uniform distribution over the domain [−4, 4]. For a given
region '−1(B′) = [−1, 1] (also shown in Fig. 6.6), we want to evaluate the probability
that G:+1 ∈ '−1(B′), which is 0.25. To this end, we apply Theorem 6.19 for different
numbers of samples 25 ≤ # ≤ 12 800 and a confidence level of V = 10−3 or 10−9. The
obtained probability bounds are random variables through their dependence on the
samples, so we repeat each experiment with 100 000 sets of # noise samples, resulting
in the probability intervals shown in Fig. 6.7a. We observe that increasing the number
of samples reduces the uncertainty in the transition probability. Moreover, the lower
bounds obtained from Theorem 6.19 are better than those obtained from Hoeffding’s
inequality, while the converse holds for the upper bounds.

100 6 Reach-Avoid Control of Linear DTSSs

Sample count # out
0,B′ | To explain whyTheorem 6.19 yields tighter lower bounds, while

Hoeffding’s inequality yields tighter upper bounds, we plot in Fig. 6.7b the probability
intervals for # = 800 samples and different values of 0 ≤ # out

0,B′ ≤ # (recall that
= # out

0,B′ + # in
0,B′). Our scenario-based approach results in significantly tighter intervals

for values of # out
0,B′ close to 0 and # . On the other hand, Hoeffding’s inequality leads to

slightly better intervals for moderate values of # out
0,B′ around

#
2 . Hoeffding’s inequality

yields bounds given by the sample mean # in
0,B′ , plus or minus a fixed value of Y which

is independent of the sample mean. Thus, if the probability % (B, 0) (B′) is close to one,
Hoeffding’s inequality leads to intervals whose upper bound is above one (or whose
lower bound is below one if % (B, 0) (B′) close to zero).

6.4 Abstraction-Based Control Algorithm
Theorem 6.19 enables us to compute a PAC interval for each transition probability of
the MDP abstraction from Sect. 6.2. In this section, we present an iterative algorithm
that uses this result to solve Problem 6.6 with a predefined confidence probability. Our
scheme is summarized in Fig. 6.8 and consists of an offline planning phase to generate an
IMDP abstraction with PAC guarantees, and an online control phase to derive a Markov
policy for the DTSS on the fly. We discuss both phases in more detail.

6.4.1 Interval MDP abstraction
The offline phase is presented in Algorithm 6.1 and follows the same general structure as
Algorithm 5.1 fromChapter 5. We first generate anMDP abstraction by defining its states
(, actions�2C , initial state B� , and for all B ∈ (the set�2C (B) of enabled actions (lines 1–5).
However, since the process noise has an unknown distribution (as per Assumption 6.17),
we cannot compute the transition probabilities of the MDP abstraction exactly.

Linear DTSS
S = (-,* , G� , e, 5)

Abstract MDP (unknown %)
M = ((,�2C, B� , %)

Abstract IMDP
MI = ((,�2C, B� ,P)

Guarantees on IMDP
Robust schedulers f̌★ and f̂★

Markov policy for DTSS
` = (`0, `1, `2, . . .)

Confidence 1 − V

Partition Ψ

Reach-avoid formula
¬(* U≤� (�

Threshold satisfaction
probability d

Partition state space
and define actions

Obtain # noise samples
and compute intervals P

Compute robust
optimal scheduler

P̌r
★
< d ≤ P̂r

★
Times

Increase sample size: # ← W#

P̂r
★
< d

(Unsatisfiable)

P̌r
★ ≥ d Check

Extract f̌★

Apply policy
(and terminate) Online

control

Offline
planning

Figure 6.8: Our iterative IMDP abstraction scheme for linear DTSSs, where # is the
number of noise samples to compute probability intervals, d is the threshold
reach-avoid probability, and P̌r★, P̂r★, and f̌★ are defined as in Algorithm 6.1.

6

6.4 Abstraction-Based Control Algorithm 101

Algorithm 6.1 Iterative IMDP abstraction with PAC guarantees.
Input: Linear DTSS S = (-,* , G� , e, 5); reach-avoid specification i = (-) , -* , ℎ);
satisfaction probability threshold d ∈ [0, 1]
Params: Partition Ψ; confidence lvl. V ; increment factor W > 1; initial size #0 ∈ N;
maximum sample size #max ∈ N
Output: Optimal robust IMDP scheduler f̌★

1: (← Ψ = {V1, . . . , V!,R
= \ Z} ⊲ Abstract states

2: () , (* ⊆ (as per Def. 5.5 for i ⊲ Target/unsafe states
3: B� ← '(G�) ∈ (⊲ Initial state
4: �2C ←

{
01, . . . , 0@

}
, @ ∈ N ⊲ Abstract actions

5: �2C (B) ←
{
0 ∈ �2C : '−1(B) ⊆ reach−1(30)

}
, ∀B ∈ (⊲ Enabled actions

6: # ← #0; P̌r★← 0; P̂r★← 1
7: while P̌r★ < d ≤ P̂r★ and# ≤ #max do
8: e

(1)
:
, . . . , e

(#)
:
∈ Ω ⊲ Obtain # noise samples

9: for all 0 in �2C do
10: for all B′ in (do
11: Compute [?̌, ?̂] for # , #>DC

B′ , and V (via Theorem 6.19)
12: P(B, 0, B′) ← [?̌, ?̂], ∀B ∈ (such that 0 ∈ �2C (B) ⊲ Prob. intervals
13: MI B ((,�2C, B� ,P) ⊲ Store IMDP
14: P̌r★← max

f∈SMIMarkov
ming∈TMI Pr

MI
f,g (B� |= ¬(* U≤ℎ (�)

15: P̂r★← max
f∈SMIMarkov

maxg∈TMI Pr
MI
f,g (B� |= ¬(* U≤ℎ (�) ⊲ Reach-avoid probs.

16: # ← W#

17: if d > P̌r★ then
18: return False
19: else
20: return f̌★← argmax

f∈SMIMarkov
ming∈TMI Pr

MI
f,g (B� |= ¬(* U≤ℎ (�)

Thus, we instead propose the following iterative IMDP abstraction scheme. In each
iteration, we first obtain # samples of the noise (line 8). Recall from Sect. 6.3 that we
can obtain these samples by inferring the process noise from previously generated state
trajectories of the DTSS or by sampling the noise distribution directly using a simulator.
For every action 0 ∈ �2C and successor state B′ ∈ (, we compute a PAC transition
probability interval P(·, 0, B′) B [?̌, ?̂] using Theorem 6.19 (lines 9–12). We store the
resulting IMDP asMI = ((,�2C, B� ,P) (line 13).

For the IMDP, we compute the optimal reach-avoid probabilities under the minimizing
and maximizing choices g ∈ TMIMarkov of nature (lines 14-15):

P̌r
★
B max

f∈SMIMarkov

min
g∈TMIMarkov

PrMIf,g (B� |= ¬(* U≤ℎ (�), and

P̂r
★
B max

f∈SMIMarkov

max
g∈TMIMarkov

PrMIf,g (B� |= ¬(* U≤ℎ (�),

102 6 Reach-Avoid Control of Linear DTSSs

which can be computed using robust value iteration (see Sect. 3.3.4). We then proceed
in one of the following ways:

1. If P̌r★ ≥ d , the algorithm terminates, returning an optimal robust scheduler f̌★,
which is computed via robust value iteration as

f̌★ B argmax
f∈SMIMarkov

min
g∈TMIMarkov

PrMIf,g (B� |= ¬(* U≤ℎ (�).

2. If P̌r★ < d (i.e., the reach-avoid probability under the most pessimistic nature
g ∈ T

MI
Markov violates the threshold d) but P̂r★ ≥ d , we increase the number of

samples to # ← W# for a fixed W > 1 and repeat the loop (until the maximum size
#max is exceeded).

3. If P̂r★ < d (i.e., the reach-avoid probability under the most optimistic nature g ∈
T
MI
Markov violates the threshold d), the problem is (with high confidence) unsatisfiable

on the current partition. In this case, increasing the number of samples does not
help, so we terminate the scheme.

6.4.2 Solving Problem 6.6 with high probability
Upon termination, Sect. 6.4.1 returns an optimal robust scheduler f̌★ for the IMDP
abstraction (or returns False in case no satisfactory scheduler was found). What remains
is to show that we can compute a Markov policy via a suitable interface function, such
that the satisfaction probability on the IMDP carries over (as a lower bound) to the DTSS.
We will obtain such an interface function by establishing the existence of aprobabilistic

alternating
simulation

relation

probabilistic
alternating simulation relation.

Recall from Def. 5.19 that a probabilistic alternating simulation relation ' ⊆ - × (is
the natural extension of a relation between an MDP and a DTSS, to an IMDP (or, more
generally, a robust Markov decision process (RMDP)) and a DTSS. The first step is to
show that, with a certain (high) probability, Algorithm 6.1 returns an IMDPMI that
induces a probabilistic alternating simulation relation with the DTSS.

Lemma 6.28 Suppose that Algorithm 6.1 terminates with an abstract IMDPMI =
((,�2C, B� ,P). Then, the following holds:

P#
{
(e (1)

:
, . . . , e

(#)
:
) ∈ Ω# : MI �alt

' S
}
≥ 1 − V · |�2C | · |(|.

Proof. The lemma is almost a direct application of Lemma 5.22 to the IMDP MI.
Concretely, this lemma states that

M �' S and
[
% (B, 0) ∈ P(B, 0) ∀B ∈ (, ∀0 ∈ �2C (B)

]
=⇒ MI �alt

' S, (6.32)

whereM = ((,�2C, B� , %). For all 0 ∈ �2C and B′ ∈ (, we have that

P#
{
(e (1)

:
, . . . , e

(#)
:
) ∈ Ω# : % (B, 0) (B′) ∈ P(B, 0) (B′), ∀B ∈ (

}
≥ 1 − V.

That is, every MDP distribution % (B, 0) is contained in the set of distributions P(B, 0)
of the IMDP with a probability of at least 1 − V . Recall from Remark 6.12 that the

6

6.4 Abstraction-Based Control Algorithm 103

abstraction has at most |�2C | · |(| unique transition probabilities, such that

P#
{
(e (1)

:
, . . . , e

(#)
:
) ∈ Ω# : % (B, 0) (B′) ∈ P(B, 0) (B′), ∀B, B′ ∈ (, 0 ∈ �2C

}
≥ 1 − V · |�2C | · |(|.

Thus, the second condition in Eq. (6.32) holds with probability at least 1 − V · |�2C | ·
|(|, whereas the first condition (M �' S) is always satisfied (as we established in
Proposition 6.13). Hence, we conclude thatMI �alt

'
S holds with a probability of at

least 1 − V · |�2C | · |(|. �

As the final step, we provide an explicit definition of the desired robust interface
function. To distinguish from the MDP interface function �f

'
defined in Lemma 6.14,

let us denote the IMDP interface function as �f
'
. Recall from Def. 5.24 that this robust

interface function must satisfy

�f' (G, :) =
{
D ∈ * : ∀B′ ∈ (, P(B, f: (B)) (B′) 3

∫
R=
1'−1 (B′) (b) ·) (3b | G,D)

}
,

(6.33)

where B ∈ (is the MDP state related to G ∈ - , i.e., (B, G) ∈ ', and) is the stochastic
kernel of the DTSS. Thus, in general, the interface function involves an integral over the
stochastic kernel) , which (as discussed before) we cannot compute exactly. Luckily, and
as before (see Remark 6.15), the interface function for the particular IMDP abstraction
we generate does not depend on the stochastic kernel. In fact, the following result shows
that we can restrict the Markov policy to the same interface function as defined in
Lemma 6.14 for the MDP abstraction.

Theorem 6.29 (Solution to Problem 6.6) Let S = (-,* , G� , e, 5) be a DTSS with
a reach-avoid specification i = (-) , -* , ℎ), and let d ∈ [0, 1]. Suppose that Al-
gorithm 6.1 terminates and returns an optimal robust scheduler f̌★ ∈ SMIMarkov. Then,
it holds that

P#
{
(e (1)

:
, . . . , e

(#)
:
) ∈ Ω# : PrS` (G� |= i) ≥ d

}
≥ 1 − V · |�2C | · |(|,

where the policy is chosen as `: (G) ∈ � f̌
★

'
(G, :) for all G ∈ - and : ∈ {0, . . . , ℎ − 1},

with the same interface function � f̌★

'
(G, :) as for the MDP abstraction:

� f̌
★

' (G, :) B
{
D ∈ * : 30 = �G + �D + @, 0 = f̌★

:
(G), (G, B) ∈ '

}
.

Proof. For now, let us assume thatMI �alt
'
S holds. Then, we know from Corol-

lary 5.25 that

PrS` (G� |= i) ≥ min
g∈TMarkov

PrMI
f̌★,g
(B� |= ¬(* U≤ℎ ()) (6.34)

where `: (G) ∈ � f̌
★

'
(G, :) for all G ∈ - and : ∈ {0, . . . , ℎ − 1}. We need to show

that any Markov policy `: (G) ∈ � f̌
★

'
(G, :) in the MDP’s interface function is also

104 6 Reach-Avoid Control of Linear DTSSs

contained in the IMDP’s interface function, i.e., `: (G) ∈ � f̌
★

'
(G, :) for all G ∈ - and

: ∈ {0, . . . , ℎ − 1}. Observe that % (B, f̌★
:
(B)) (B′) ∈ P(B, f̌★

:
(B)) (B′), which implies

P(B, f̌★
:
(B)) (B′) 3 % (B, f̌★

:
(B)) (B′) =

∫
R=
1'−1 (B′) (b) ·) (3b | G,D) .

Thus, the MDP’s interface function � f̌★

'
is a subset of the IMDP’s interface function

� f̌
★

'
, such that � f̌★

'
(G, :) ⊆ � f̌★

'
(G, :). It follows that

`: (G) ∈ � f̌
★

' (G, :) =⇒ `: (G) ∈ � f̌
★

' (G, :),

which shows that � f̌★

'
is a valid interface function for the DTSS.

Finally, we assumed in this proof thatMI �alt
'
S but, in fact, this is only true with

a probability of at least 1 − V · |�2C | · |(|. By incorporating this probability into the
statements in this proof, we obtain the desired claim and thus conclude the proof. �

Theorem 6.29 shows that Algorithm 6.1 yields, with probability at least 1−V · |�2C | · |(|
(with respect to the noise samples (e (1)

:
, . . . , e

(#)
:
) ∈ Ω#), a solution to Problem 6.6.

In other words, termination of Sect. 6.4.1 implies that (with a probability of at least
1 − V · |�2C | · |(|) we have found a solution to Problem 6.6. Interestingly, we concluded
that the interface function that determines the Markov policy is the same as for the MDP
abstraction and is thus (as discussed earlier on) independent of the stochastic kernel) .
This observation allows for simpler control design, in which only the IMDP scheduler
(but not the abstraction itself) is needed within the online control loop.

6.5 Exploiting Stability for Smaller Abstractions
The size of IMDPs can be expressed by the number of transitions in the underlying graph.
Inspired by the fact that only a small subset of the transitions are taken under an optimal
scheduler, we adapt our abstraction framework presented thus far to create smaller
abstractions. We leverage the two-layer control design framework shown in Fig. 6.9,
which first stabilizes the dynamics and then creates an abstraction of the closed-loop
dynamics. Specifically, we use the composite feedback control given by

D: B − G: + D′: , (6.35)

where the gain matrix ∈ R<×= represents a stabilizing Markov policy, and D′
:
is a

control input obtained from a Markov policy D′
:
B `: (G:) as we did before. We may

obtain the feedback gain matrix by solving an instance of a linear quadratic regulator
(LQR) control problem [FPE21].

Applying the composite feedback policy in Eq. (6.35) to the linear DTSS yields the
closed-loop dynamics given by

G:+1 = �G: + �(− G: + D′:) + @ + e:
= �clG: + �D′: + @ + e: ,

where �cl = � − � . We assume that the feedback gain satisfies the input constraints
in the following way.

6

6.5 Exploiting Stability for Smaller Abstractions 105

Linear DTSS
G:+1 = �G: + �D: + @: + e:

Input from Markov policy
D: := `: (G:) ∈ � f̌

★

'
('(G:), :)

Stochastic noise e:
D: ∈ * G:

(a) Single-layer abstraction.

Linear DTSS
G:+1 = �G: + �D: + @: + e:

Stabilizing input
− G:

Input from Markov policy
D′
:
:= `: (G:) ∈ � f̌

★

'
('(G:), :)

Stochastic noise e:D: = − G:
+D′

:
∈ *

+

G:

D′
:
∈ * ′

(b) Two-layer abstraction.

Figure 6.9: The feedback design framework from Sect. 6.4 (a), versus a two-layer feedback
design framework, which combines a linear feedback gain with the Markov
policy obtained from the abstraction.

Assumption 6.30 (Non-singular closed-loop dynamics) The gain matrix ∈
R<×= is such that − G ∈ * for all G ∈ Z and the matrix �cl is non-singular.

6.5.1 Backward reachable sets
We show how our IMDP abstraction algorithm from Sect. 6.4 can be employed together
with the composite Markov policy in Eq. (6.35). Recall from Assumption 6.3 that the
control input space * is a convex polytope * = {D ∈ R< : �D ≤ 6} ⊂ R< . Let us
define a second polytopic control input space* ′ = {D ∈ R< : � ′D ≤ 6′} ⊂ R< , where
� ′ ∈ R@×< and 6′ ∈ R@ . Then, we replace the backward reachable set computation in
Eq. (6.5) with one that depends explicitly on this newly defined set* ′:

reach−1cl (30,*
′) = {G ∈ R= : 30 = �clG + �D + @,

− G + D′ ∈ * , D′ ∈ * ′}.
(6.36)

The constraint − G+D′ ∈ * enforces that the total input is admissible, and the constraint
D′ ∈ * ′ will enable us to control the size of the abstraction.

Assumption 6.31 (Origin contained in [′) The set * ′ = {D ∈ R< : � ′D ≤ ℎ′}
contains the origin: 0 ∈ * ′.

Observe that Eq. (6.36) is of the same form as Eq. (6.5) (despite imposing additional
constraints) and can thus be computed similarly, as shown by the following lemma.

Lemma 6.32 (Backward reachable set properties) Under Assumptions 6.30
and 6.31, the following holds:
8) For any 30 ∈ R= , the set reach−1cl (30,* ′) is non-empty;

88) reach−1cl (30,* ′) = {G ∈ R= | 30 = �clG + �D′ + @, D′ ∈ *̃ }, where *̃ ⊂ R< is a

106 6 Reach-Avoid Control of Linear DTSSs

convex polytope defined as

*̃ =
{
D ∈ R< : � (U + VD) ≤ 6, � ′D ≤ 6′

}
, (6.37)

with U = − (�−1cl 30 − @) and V = � + �−1cl �.

Proof. Item 8): We will show that the point G̃ = �−1cl 30 ∈ reach−1cl (30,* ′). Note that
this point G̃ is obtained for D′ = 0 in Eq. (6.36), which is an admissible input due to
Assumption 6.31. Moreover, due to Assumption 6.30, we have that − G ∈ * , and thus,
it holds that G̃ ∈ reach−1cl (30,* ′), which concludes the proof of item 8).

Item 88): Solving the equality constraint in Eq. (6.36) for G yields G = �−1cl (30−�D−@),
so the input constraint − G + D′ ∈ * can be written as

− (�−1cl 30 − @) + (� + �
−1
cl �)D

′ = U + VD′ ∈ * .

Thus, we have two convex polyhedral constraints on D, given by U + VD′ ∈ * = {D ∈
R< : �D ≤ 6} and D′ ∈ * ′ = {D ∈ R< : � ′D ≤ 6′}. The intersection of the feasible
sets for D is the set *̃ in Eq. (6.37), which concludes the proof of item 88). �

Recall from Eq. (6.5) in Sect. 6.2 that the backward reachable set reach−1(30) can be
computed by enumerating the vertices of * . Lemma 6.32 shows that reach−1(30) is of
the same form as reach−1(30) and can thus be computed by enumerating the vertices of
*̃ defined in Eq. (6.37). However, the number of vertices to consider is generally higher
due to the additional input constraint D′ ∈ * ′.

6.5.2 Constructing smaller abstractions
We can use the modified backward reachable set in Eq. (6.36) to construct abstractions
with fewer enabled actions, as shown by the following lemma.

Lemma 6.33 (Smaller backward reachable sets) Compare reach−1(30) ob-
tained from Eq. (6.5) with reach−1cl (30,* ′′) obtained from Eq. (6.36). If * ′ = R? in
Eq. (6.36), then we have that reach−1cl (30,* ′) = reach−1(30). Moreover, for any
* ′′ ⊂ * ′ ⊆ R? , it holds that reach−1cl (30,* ′′) ⊆ reach−1cl (30,* ′).

Proof. Letting* ′ = R? and �cl = � − � in Eq. (6.36) gives

reach−1cl (30,*
′) =

{
G ∈ R= : 30 = �G + �(− G + D′) + @, − G + D′ ∈ *

}
=

{
G ∈ R= : 30 = �G + �D + @, D ∈ *

}
= reach−1(30),

which concludes the proof of the first part of the lemma. Second, for * ′′ ⊂ * ′,
observe from Eq. (6.36) that D′ ∈ * ′′ ⊂ * ′. Thus, we obtain that reach−1cl (30,* ′′) ⊆
reach−1cl (30,* ′), which concludes the second part of the proof. �

Recall from Eq. (6.6) in Sect. 6.2 that an IMDP action 0 ∈ �2C is enabled in state B ∈ (
if and only if the set '−1(B) is contained in the backward reachable set reach−1(30). We
replace reach−1(30) with the modified version reach−1cl (30,* ′), such that for all B ∈ (,

6

6.6 Experimental Evaluation 107

the subset �2C (B) ⊆ �2C of enabled actions becomes

�2C (B) =
{
0 ∈ �2C : '−1(B) ⊆ reach−1cl (30,*

′)
}
. (6.38)

By controlling the size of* ′, we can control the size of the modified backward reachable
set reach−1cl (30) and thus the size of the graph of the IMDP (through the number of
enabled actions). In Sect. 6.6, we show how suitable choices for the feedback gain and
input constraint* ′ may lead to significantly smaller IMDP abstractions.

6.6 Experimental Evaluation
We perform numerical experiments to demonstrate the applicability of Algorithm 6.1
for solving Problem 6.6. We implement Algorithm 6.1 in a Python tool called DynAbs,
which we present in more detail in Chapter 14. Given a linear DTSS, a reach-avoid
specification, a satisfaction probability threshold, and the required parameters, DynAbs
applies the iterative abstraction scheme from Algorithm 6.1. When DynAbs returns an
optimal robust IMDP scheduler f̌★, then it is guaranteed (with the specified confidence
probability) to solve Problem 6.6 as per Theorem 6.29.

Reproducibility | The Python code to reproduce the experimental results is provided
with DynAbs; see Chapter 14 for details. All experiments in this chapter are run on a
computer with 32 3.7GHz cores and 64 GB of RAM.

Overview of experiments | In this chapter, we report the performance on (1) a UAV
motion control problem, and (2) a spacecraft docking problem. In particular, we will
consider the following questions about our approach:
1. Is it, in practice, necessary to use IMDP instead of MDP abstractions to obtain safe

Markov policies for the DTSS?
2. How does the sample size # used to compute the probability intervals of the IMDP

affect the performance of our approach?
3. Can the two-layer feedback design framework presented in Sect. 6.5 be used to

construct smaller IMDP abstractions while retaining performance?
To limit the length of this thesis, we selected the experimental results which we believe
are most representative of our approach. As a result, several experiments that investigate
other questions about our approach are omitted. We refer to [7] for more details on
the scalability of our approach and comparisons against two state-of-the-art tools,
namely StocHy [CA19] and SReachTools [VGO19]. Similarly, we refer to [10] for more
experiments on the two-layer feedback design framework from Sect. 6.5.

6.6.1 UAV motion planning
We consider Problem 6.6 for a reach-avoid problem for a UAV operating under turbulence.
The horizon for the reach-avoid problem is ℎ = 64 time steps, and the target and unsafe
sets are displayed in Fig. 6.10 in green and red, respectively.

DTSS formulation | We use a simplified model for the UAV as a system of 3 double
integrators, such that the 6D state vector is G = [?G , EG , ?~, E~, ?I, EI]> ∈ R6, where ?8
and E8 are the position and velocity in the direction 8 . Control inputs D: ∈ * ⊂ R3 model

108 6 Reach-Avoid Control of Linear DTSSs

Figure 6.10: UAV reach-avoid problem (target in green; unsafe states in red), plus tra-
jectories under the optimal IMDP-based Markov policy from initial state
G0 = [−14, 0, 6, 0,−6, 0]>, under high and low turbulence.

actuators that change the velocity, where* = [−4, 4]3. The discrete-time dynamics are
then defined as follows:

G:+1 =



1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1


G: +



0.5 0 0
1 0 0
0 0.5 0
0 1 0
0 0 0.5
0 0 1


D: + e: , (6.39)

where e: ∈ R6 is the effect of turbulence on the dynamics. Note that the drift term @ = 0
and is thus omitted from Eq. (6.39). We group every two discrete time steps together to
render the DTSS fully actuated (referring to [7] for details).

The process noise distribution comes from a Dryden gust model [BCMJ19; Dry43].
Importantly, this noise model is non-Gaussian but enables us to cheaply obtain samples,
which we use to compute probability intervals for the IMDP abstraction.

Reach-avoid problem | We consider Problem 6.6 with a probability threshold of
d = 0.75. Thus, the problem is to compute a Markov policy ` for the DTSS such that
PrS` (G� |= i) ≥ 0.75. The set of target states is defined as

-) = {G ∈ R6 | 11 ≤ ?G ≤ 15, 1 ≤ ?~ ≤ 5, −7 ≤ ?I ≤ −3}.

For brevity, we omit an explicit definition of the critical regions.

6

6.6 Experimental Evaluation 109

IMDP abstraction | We apply Algorithm 6.1 with V = 0.01, W = 2, #0 = 25, with an
upper bound of #max = 12 800 samples. We use a partition Ψ of the 6-dimensional state
space into 25 515 hyperrectangular regions. The resulting reach-avoid9 probabilities
P̌r

★ obtained from Algorithm 6.1 are shown in Fig. 6.11. Observe that the threshold
probability of d = 0.75 is satisfied for # = 3 200 samples and higher.

Validating the satisfaction probability | To validate whether the reach-avoid prob-
abilities P̌r★ for the IMDP are indeed a lower bound of the reach-avoid probability on the
DTSS, we perform Monte Carlo simulations. Specifically, for every value of # , we use
Theorem 6.29 to obtain a Markov policy ` defined as `: (G) ∈ � f̌

★

'
(G, :) contained in the

interface for the optimal IMDP scheduler f̌★. For each Markov policy, we simulate the
DTSS 10 000 times and compute the empirical reach-avoid probability (as the fraction of
executions that satisfy the reach-avoid specification), which are shown in Fig. 6.11 by the
dashed line. As expected, the IMDP reach-avoid probability P̌r

★ (solid line) consistently
lower bounds the fraction of satisfying DTSS executions.

Accounting for noise matters for safety | In Fig. 6.10, we show state trajectories
under the Markov policy `: (G) ∈ � f̌

★

'
(G, :) derived from the optimal IMDP scheduler,

under two different strengths (high and low) for the turbulence (i.e., process noise).
Under low process noise, the UAV takes the short but narrow path. On the other hand,
with the high process noise level, the longer but safer path is preferred since the risk of
colliding with an obstacle is too high. Thus, accounting for process noise is important
to obtain Markov policies that are safe.

Robust abstractions give safer guarantees | To show the importance of using
robust abstractions, we compare our robust IMDP approach against a naïve MDP ab-
straction. This MDP has the same states and actions as the IMDP but uses precise
transition probabilities, which are computed using the frequentist approach in Def. 6.18.
For the MDP abstraction, we compute (using value iteration; see Sect. 3.2.3) an optimal
scheduler f+ and the corresponding maximal reach-avoid probability PrM

f+ :

f+ ∈ argmax
f∈SMMarkov

PrMf (B |= ira), and Pr+ B max
f∈SMMarkov

PrMf (B |= ira) .

The values of Pr+ for different values of # are also shown in Fig. 6.11, as well as the
fraction of satisfying DTSS executions (in Monte Carlo simulations). Observe that the
(non-robust) MDP abstractions yield invalid satisfaction guarantees: The actual reach-
avoid probability of the Markov policy on the DTSS is much lower than the reach-avoid
probability Pr★ on the MDP. The intuitive reason for this unsafe behavior is that the
MDP consists of millions of transitions, so even though the estimation error in each
individual transition probability is small, the overall error in the satisfaction probability
is still significant. By contrast, despite being more conservative, our robust IMDP-based
approach consistently yields safe lower-bound guarantees on the actual satisfaction
probability observed in simulations.

9Since we only consider reach-avoid problems, we use the words reach-avoid probability and satisfaction
probability interchangeably.

110 6 Reach-Avoid Control of Linear DTSSs

25 250 2,50
00

0.25

0.5

0.75

1

Number of samples (#)

Re
ac
h-
av
oi
d
pr
ob
ab
ili
ty

IMDP reach-avoid probability P̌r
★

DTSS simulation; ` (G, :) ∈ � f̌
★

'
(G, :)

MDP reach-avoid probability P̌r
+

DTSS simulation; ` (G, :) ∈ �f
+

'
(G, :)

Figure 6.11: Themaximal reach-avoid probabilities on the IMDP (blue) andMDP (orange),
versus the fraction of satisfying DTSS executions in simulations (under the
resulting Markov policies). The shaded areas show the standard deviation
across 10 iterations.

6.6.2 Spacecraft docking
In the second experiment, we demonstrate how the two-layer feedback design framework
from Sect. 6.5 can be used to construct smaller IMDP abstractions. We consider the
spacecraft docking problem from [VGO19], which has a 4D state G ∈ R4 modeling the
position and velocity in two dimensions, and which evolves as

G:+1 =


1.0006 0.0000 19.9986 0.4100
8.6200 1.0000 −0.4100 19.9944
6.3000 0.0000 0.9998 0.0410
−1.2900 0.0000 −0.0410 0.9992

 G: +

0.33332 0.00456
−0.00456 0.33329
0.33331 0.00068
−0.00069 0.33324

 D: + e: ,
(6.40)

where the process noise e: ∼ N(0, diag(10−4, 10−4, 5 × 10−8, 5 × 10−8)) has a Gaussian
distribution, and D: ∈ * = [−0.1, 0.1]0.2 ⊂ R2. We partition the state space into 3 200
rectangular regions and consider the reach-avoid problem depicted in Fig. 6.12 with a
horizon of ℎ = 8 steps.

Comparison to SReachTools | SReachTools [VGO19] is an optimization-based
toolbox for probabilistic reach-avoid problems. While we use samples to generate a
model abstraction, SReachTools employs sample-based methods over the specifications
directly. Distinctively, SReachTools does not create abstractions (as in our case) and
is thus generally faster than our method. However, its complexity is exponential in
the number of samples (versus the linear complexity for our method). Importantly, we
derive Markov policies, which use state feedback, while the sampling-based methods of
SReachTools compute open-loop controllers. Open-loop controllers do not consider any
feedback, making such controllers unsafe in settings with significant noise levels [ÅM10].
Markov policies use state feedback and are, therefore, more robust against strong
disturbances from noise, as also shown in Fig. 6.12.

6

6.6 Experimental Evaluation 111

-0.8 -0.6 -0.4 -0.2 0

-0.8

-0.6

-0.4

-0.2

0

-0.8 -0.6 -0.4 -0.2 0 0.2

Low noise covariance High noise covariance

(N=1600)

Figure 6.12: Simulated state trajectories for the spacecraft docking problem, under pro-
cess noise with low and high covariance, respectively. Our Markov policies
use state feedback and are thus more robust than open-loop controllers, as
shown by the smaller error in the state trajectories over time (the Voronoi
method under high covariance failed to generate a solution).

Exploiting stability for smaller abstractions | Suppose that we choose an overall
confidence of 1− V · |�2C | · (= 0.99 in Theorem 6.29. The resulting IMDP has 1.6million
transitions (i.e., the underlying graph has 1.6 million edges) and leads to a reach-avoid
probability of P̌r★ = 0.80, such that we can guarantee that PrS` (G� |= i) ≥ 0.80, where `
is the Markov policy obtained from Theorem 6.29. We can use the two-layer feedback
design framework from Sect. 6.5 to obtain a significantly smaller abstraction at the cost
of a small reduction in the reach-avoid probability P̌r

★. Specifically, before generating
the abstraction, we stabilize the dynamics in Eq. (6.40) with an LQR, such that we obtain
closed-loop dynamics of the form

G:+1 = (� − �)G: + �D: + e: ,

where ∈ R2×4 is the feedback gain. Then, we replace the backward reachable set
computations in Algorithm 6.1 with the computation in Eq. (6.36), where we fix* ′ =
[−0.08, 0.08]2, which is slightly smaller than the original input space * = [−0.1, 0.1]2.
The resulting IMDP abstraction has 280 thousand transitions (a reduction of 79%) and
leads to a satisfaction probability of P̌r★ = 0.79 (only 0.01 below the baseline).

To explain this significant improvement, we plot the vector field (� − �)G under
the stabilizing controller for this reach-avoid problem in Fig. 6.13a. Observe that the
stabilizing controller steers the system toward the target states -) and away from the
unsafe states -* . Thus, the Markov policy derived from the abstraction only has to
deviate slightly from this natural vector field. In such cases, we can thus construct
significantly smaller abstractions at negligible performance loss.

Alignment of the stabilizing controller is important | However, if the reach-avoid
specification and the stabilizing controller are not well-aligned, performance may drop
significantly. For example, in Fig. 6.13b, we consider a different reach-avoid problem. In
this case, when we abstract the stabilizing dynamics, the satisfaction probability drops

112 6 Reach-Avoid Control of Linear DTSSs

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.8

−0.6

−0.4

−0.2

0.0
y

(a) Specification and stabilization aligned.

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

y

(b) Specification and stabilization misaligned.

Figure 6.13: Simulated trajectories and stabilized vector fields (� − �)G for the reach-
avoid problems on the spacecraft docking benchmark (only the two position
state variables are shown). In case (a), the specification and vector fields
are aligned, while this is not the case for case (b).

to P̌r = 0.0072, i.e., almost to zero. This severe performance loss is clearly observed
from the simulated trajectories in Fig. 6.13b: The stabilizing controller directly steers
the system towards the unsafe states, and the abstraction cannot counteract this action
due to the reduced control limits* ′ ⊂ * .

6.7 Related Work
In Sect. 5.2, we discussed related work on abstraction-based policy synthesis for DTSSs.
The majority of these methods rely on full knowledge of the probabilistic models. In
other words, the distribution of the stochastic noise must be known. Our approach
breaks away from this literature and can be used to generate formal abstractions without
requiring any knowledge of the noise distribution. We leverage results from the scenario
approach [CC05; CG18a] to deal with these unknown noise distributions in a sampling-
based fashion.

Backward reachability computations | A defining characteristic of the abstraction
method presented in this chapter is that each abstract action is associated with a fixed
distribution over (continuous) successor states (which we call the backward method). By
contrast, other abstractions typically associate each abstract action with a fixed control
input, such that the distribution over successor states depends on the precise continuous
state where the abstract action is chosen (which we call the forward method). We
demonstrate the difference between the backward and forward methods in more detail
in Remark 6.11. With our approach, each abstract action leads to a single distribution
over successor states that is independent of the precise continuous state where the
abstract action is chosen. Doing so comes at the cost of more restrictive assumptions on
the dynamics, namely Assumption 6.4.

Other sampling techniques | The controller synthesis tool SReachTools [VGO19]
also exhibits a sampling-based method but relies on Hoeffding’s inequality to obtain
confidence guarantees [SVAO19], so the noise is assumed to be sub-Gaussian [BLM13].

6

6.8 Discussion 113

By contrast, the scenario approach is completely distribution-free [CG18a]. Moreover, as
we will show in this chapter (specifically, in Sect. 6.3.4), the scenario approach may lead
to abstract models with significantly better probability intervals compared to Hoeffding’s
inequality. In addition, SReachTools is limited to problems with convex safe sets (a
restrictive assumption in many problems), and its sampling-based methods can only
synthesize open-loop controllers, which may undermine the robustness of the overall
approach. Another body of relevant literature entails sampling-based feedback motion
planning algorithms, e.g., LQR-Trees [TMTR10]. However, sampling in LQR-Trees
relates to random exploration of the state space and not to stochastic noise affecting the
dynamics as in our setting [RPT16]. Finally, Monte Carlo methods (e.g., particle methods)
have also been used to solve stochastic reach-avoid problems [BOBW10; LOE13]. These
methods simulate the system via many samples of the uncertain variable [Smi13]. Monte
Carlo methods approximate stochastic problems but do not provide rigorous bounds
with a desired confidence level on the obtained results as our approach does.

Distributionally robust optimization | In distributionally robust optimization
(DRO), decisions are robust with respect to ambiguity sets of distributions [EK18; GS10;
WKS14]. While the scenario approach uses samples of the uncertain variable, DROworks
on the domain of uncertainty directly, thus involving potentially complex ambiguity
sets [GC22]. Designing robust schedulers for IMDPs with known uncertainty sets was
studied by [PLSS13], and [WTM12]. Furthermore, hybrid methods between the scenario
approach and robust optimization also exist [MGL14].

PAC literature | The term probably approximately correct (PAC) refers to obtaining,
with high probability, a hypothesis that is a good approximation of some unknown
phenomenon [HW93]. PAC learning methods for discrete-state MDPs are developed in
[BT02], [FT14], and [KS02]. Furthermore, PAC statistical model checking for MDPs is
studied by [AKW19; MWW24].

6.8 Discussion
We finish this chapter by discussing the open challenges and limitations of our
abstraction-based policy synthesis scheme for linear DTSS.

Tighter probability intervals | While our experiments illustrate that our scenario-
based method to compute probability intervals leads to reasonable lower bounds on the
satisfaction probability, the tightness of the intervals can still be improved. Recently,
[MWW24] pointed out that our probability intervals based on the scenario approach can
be improved by using the Clopper-Pearson interval. The Clopper-Pearson interval is a
classical statistical method for calculating binomial confidence intervals, and can thus be
applied to bound the unknown success probability of a binomial random variable [CP34;
New98]: Thus, as pointed out in [MWW24, Theorem 2], these results could readily be
incorporated into our framework to construct IMDPs with smaller probability intervals
and thus obtain a tighter lower bound on the satisfaction probability.

Robust MDP abstractions | In this chapter, we have focused on IMDP abstractions.
However, the theoretical results from Chapter 5 are valid for general RMDPs. An in-
teresting direction for future work is to consider abstractions into RMDPs with convex

114 6 Reach-Avoid Control of Linear DTSSs

polytopic uncertainty sets, which allow for modeling the estimates of transition probabil-
ities with tighter uncertainty sets. By contrast, our IMDP abstraction method essentially
estimates each transition probability independently, which leads to more conservative
abstractions in general. Such an approach for abstractions into RMDPs has recently
been explored by [GBLL24].

Curse of dimensionality | While the ideas from Sect. 6.5 can be used to construct
significantly smaller abstractions, the scalability of our approach (and any discretization-
based method) remains a general concern. One approach to improve the scalability
is to better exploit the structure of the DTSS, e.g., as recently done by X for models
represented as mixtures of Gaussian processes. Another interesting avenue for future
research is to combine our formal abstractions with a learning scheme. The general
idea is to first use learning techniques (e.g., reinforcement learning [SB98]) to efficiently
learn a candidate Markov policy without any formal guarantees. We can then use our
abstraction-based method to provide hard guarantees on the satisfaction probability
of the learned candidate policy. More specifically, our stability-based scheme from
Sect. 6.5 may readily be extended from a single stabilizing controller to a piecewise affine
controller over the state space. Interestingly, a neural network with ReLU activation
functions (which are among the most popular in deep reinforcement learning) represents
such a piecewise affine controller, thus posing an interesting potential connection
between learning and verification.

Partial observability | In this chapter, we considered DTSSs with full state observab-
ility. Intuitively, having full state observability means that Markov policies can use the
full state information, i.e., they are defined as a mapping from states to actions. However,
in many realistic systems, states are rarely fully observable. For example, a UAV may
only have access to noisy GPS measurements of its position, and a self-driving car may
only have access to camera images or LIDAR to determine the movement of pedestrians.
In such applications, the assumption that the full state is observable is unrealistic, and
partially observable models are needed instead. However, control problems for partially
observable systems are notoriously hard in general, and several problems are proven
to be undecidable already for discrete-state/action models, i.e., for partially observable
Markov decision processes (POMDPs) [MHC99; CCT16].

One exception, which we investigate in [5], is when both the state transition dynamics
and the observation model are linear, and when both are subject to additive Gaussian
noise. The abstraction algorithm from this chapter can be extended to such linear
Gaussian systems relatively straightforwardly, by using a Kalman filter [Kal60; WB01] to
estimate the state of the system and then construction an abstraction of the estimated state
(called the belief) instead of the actual state. Importantly, the Kalman filter represents
the belief of the state as a Gaussian distribution, such that the belief is fully characterized
by its mean and covariance matrix. For linear Gaussian systems, the Kalman filter is
optimal in the minimum mean-square-error sense, meaning its estimate is the least
uncertain of any filter given the same history of information [TBF05; HRW12]. We omit
a full discussion of this extension in this thesis, and we refer the interested reader to our
paper [5] for more details instead.

6

6.8 Discussion 115

Summary

î We have presented an algorithm for synthesizing Markov policies for linear
DTSSs that provably satisfy reach-avoid specifications.

î We drop the unrealistic assumption that the distribution of the stochastic
noise of the DTSS is known and instead only assume access to a finite set
of noise samples.

î We generate a finite abstraction of the DTSS in the form of an IMDP, whose
probability intervals are computed using data-driven techniques.

î The correctness of our algorithm is agnostic to the noise distribution.
î The stability of a DTSS can be exploited to reduce the size of abstractions

significantly while retaining the correctness guarantees.

7

117

7 DTSSs With Uncertain Parameters
Summary | So far, we have considered discrete-time stochastic systems (DTSSs)
whose (probabilistic) transition function is precisely known. As a result, these systems
exclusively capture stochastic uncertainty and require that model parameters be known
precisely. In this chapter, we study the lower bound control problem (introduced in
Chapter 5) for DTSSs with uncertain parameters. These uncertain parameters are
assumed to lie in a convex uncertainty set, but we do not assume any probability
distribution over these parameters. By sampling techniques and robust analysis, we
capture both the stochastic and parameter uncertainty, with a user-specified confidence
level, in the transition probability intervals of an interval Markov decision process
(IMDP). We show that the probabilistic simulation relations from Chapter 5 extend
naturally to DTSSs with uncertain parameters, and that the IMDP abstraction induces
such a relation. Our experiments show that our approach leads to Markov policies that
are more robust against variations in parameter values.

Origins | The results of this chapter are based on the conference paper:
[6] Badings, Romao, Abate, Jansen (2023) ‘Probabilities Are Not Enough: Formal Control-

ler Synthesis for Stochastic Dynamical Models with Epistemic Uncertainty’. AAAI.
In this paper, we present the first abstraction-based, formal policy synthesis method that
simultaneously captures set-bounded parameter uncertainty and stochastic uncertainty
for models with continuous state and action spaces.

Background | We assume the reader is familiar with Markov decision processes
(MDPs) (Def. 3.1) and IMDPs (Def. 3.27), and with computing optimal schedulers for
reach-avoid probabilities. Moreover, to capture stochastic uncertainty in models, we
build upon the probability-theoretic definitions from Sect. 2.3.

7.1 Parameter Uncertainty in DTSSs
Recall from Chapter 4 that the state evolution of a discrete-time stochastic system (DTSS)
is characterized by its state transition function 5 : - ×* ×Ve → - , or (equivalently) by
the stochastic kernel) : B(-)×- ×* → [0, 1], which assigns to every state-control pair
(G: , D:) a distribution over successor states G:+1. Thus, the DTSS captures uncertainty
about its execution of a purely stochastic nature. For example, in Sect. 6.6.1, we modeled
the effect of turbulence on a drone as such a (non-Gaussian) stochastic disturbance.

However, what if certain parameters of the DTSS are only known up to a limited
precision? For example, the mass of a drone may only be known up to a given interval,
e.g., 0.75–1.25 kg. Assuming that we do not have any information about the likelihood
of each value for the mass, it is unrealistic to employ a probabilistic model to capture the

118 7 DTSSs With Uncertain Parameters

System
Gamepad
Policy

Control
input

WEIGHT-HANGING
−

WEIGHT-HANGING
+WEIGHT-HANGING

−

WEIGHT-HANGING
+

P
{
Wind = high

}
P{ Wind = low }

Figure 7.1: Stochastic uncertainty in the wind (Wind) causes probability distributions over
the outcomes of controls, while set-bounded uncertainty in the mass (WEIGHT-HANGING) of
the drone causes state transitions to be nondeterministic.

uncertainty [HW21]. Instead, we can only assume that every value for the mass in the
interval is a possibility, and thus, we obtain a set of possible state transition dynamics.
This perspective is illustrated in Fig. 7.1, showing that stochastic uncertainty leads to dis-
tributions over outcomes of controls, whereas set-bounded parameter uncertainty leads to
sets of possible outcomes. In other words, parameter uncertainty leads to nondeterminism
in the outcomes of actions.

Formally, we extend the definition of a DTSS in Def. 4.2 as follows to capture parameter
uncertainty. We will refer to such a model as a robust DTSS (RDTSS).

Definition 7.1 (RDTSS) Arobust
DTSS

robust DTSS (RDTSS) is a tuple S' B (-,* , Γ, G� , e, �),
where

• - ⊆ R= is a Borel space, called the state space of the system;
• * ⊆ R< is a Borel space, called the (control) input space of the system;
• Γ ⊂ RA is a Borel space, called the parameter space of the system;
• G� ∈ - is the initial state;
• e = (e:):∈N is a discrete-time stochastic process defined on a probability
space (Ω, F , P) with its natural filtration {F: }:∈N (see Def. 2.10), where each
e: : Ω →Ve maps to a common measurable space (Ve , Fe);

• � : - ×* ×Ve × Γ → - is a parametric state transition function.

Note that the difference between Defs. 4.2 and 7.1 is the parametric transition function
� . In particular, fixing a parameter value W ∈ Γ for an robust DTSS (RDTSS) yields a
standard DTSS, which we call the induced DTSS.

Definition 7.2 (Induced DTSS) Fixing a parameter value W ∈ Γ for an RDTSS
S' = (-,* , Γ, G� , e, �)induced

DTSS
induces a standard DTSS, denoted by S' [W] = (-,* , G� , e, 5),

where the transition function 5 is defined as

5 (G,D, ē) = � (G,D, e,W), ∀G ∈ -, D ∈ * , ē ∈ Ve .

7.1.1 Assumptions
In this chapter, and analogous to Chapter 6, we consider RDTSSs with a linear transition
function. Specifically, we assume that the transition function � of the RDTSS is defined

7

7.1 Parameter Uncertainty in DTSSs 119

for all G ∈ - , D ∈ * , e ∈ Ve , and W ∈ Γ as

� (G,D, e,W) = �(W)G + �(W)D + @(W) + e, (7.1)

where the dynamics matrix �(W) ∈ R=×= , control matrix �(W) ∈ R=×< , and disturbance
@(W) ∈ R= are convex combinations of a finite set of A ∈ N known elements:

�(W) =
A∑
8=1

W8�8 , �(W) =
A∑
8=1

W8�8 , and @(W) =
A∑
8=1

W8@8 ,

where the (unknown) parameter W ∈ Γ can be any point in the unit simplex Γ ⊂ RA :

Γ =

{
W ∈ RA : W8 ≥ 0, ∀8 ∈ {1, . . . , A },

∑A

8=1
W8 = 1

}
.

The model in Eq. (7.1) has set-bounded
parameter
uncertainty

set-bounded uncertain parameters through W ∈ Γ (against
which we want to be robust) and is stochastic due to the process (e:):∈N (which we want
to reason over probabilistically). Importantly, we assume that the (unknown) parameter
W ∈ Γ is not observable to the Markov policy. Thus, we will aim to synthesize a single
Markov policy that is robust against all possible values of the parameter W ∈ Γ.

Suppose that we are given an RDTSS with a linear transition function. For this
RDTSS, we again consider Assumptions 4.4 and 6.2 (the process noise is i.i.d. and has
density), Assumption 6.3 (the set * is a convex polytope), and Assumption 6.17 (the
noise distribution is unknown). However, as an important difference to the previous
chapter, instead of imposing Assumption 6.4, we only make the following assumption.

Assumption 7.3 (Non-singular dynamics) The matrix �(Ŵ) in Eq. (7.1) is non-
singular for some Ŵ ∈ Γ.

Thus, compared to Chapter 6, we drop the strong assumption that the pair (�, �) is
controllable. Assumption 7.3 is milder as it only requires the existence of a non-singular
matrix in the convex hull conv{�1, . . . , �A } of the dynamics matrix.

Modeling uncertain parameters | The model defined in Eq. (7.1) can be used to
capture parameters known up to an interval, as illustrated by the following example.

Example 7.4 Consider again the drone depicted in Fig. 7.1. The drone’s longitudinal
position ?: and velocity E: are modeled as

G:+1 =

[
?:+1
E:+1

]
=

[
1 XC

0 <−0.1XC
<

]
G: +

[
X2C
2<
XC
<

]
D: + e: ,

with XC the discretization time, and * = [−5, 5]. Assume that the mass< is only
known to lie within [0.75, 1.25]. Then, we obtain an RDTSS with a linear transition
function as in Eq. (7.1), with A = 2 vertices where �1, �1 are obtained for< B 0.75,
and �2, �2 for< B 1.25 (and @1 = @2 = 0).

120 7 DTSSs With Uncertain Parameters

7.1.2 Problem statement
In this chapter, we consider a robust variant of the lower bound control problem (see
Chapter 5) tailored to RDTSSs with a linear transition function as in Eq. (7.1). Intuitively,
our goal is to synthesize a Markov policy that (1) is robust against nondeterminism
due to parameter uncertainty and (2) reasons probabilistically over the stochastic noise.
Using the terminology from [WKR13], our goal is to be risk-averse against the uncertain
parameters, while being risk-neutral against the stochastic noise. More specifically, we
aim to find a Markov policy for which the reach-avoid probability is above a certain
threshold d ∈ [0, 1] for every possible value of the unknown parameter W ∈ Γ.

Recall from Def. 7.2 that fixing a parameter value W ∈ Γ for an RDTSS induces a
standard DTSS denoted by S' [W]. Furthermore, recall from Def. 4.11 that PrS' [W]` (G� |=
i) is the probability of satisfying a reach-avoid specification i under a Markov policy `,
starting from the initial state G� . We then consider the following problem.

Problem 7.5 (Lower bound control for linear RDTSS) Given an RDTSS S' =

(-,* , Γ, G� , e, �) with a linear transition function as in Eq. (7.1), a reach-avoid spe-
cification i = (-) , -* , ℎ), and a desired threshold probability d ∈ [0, 1], compute a
Markov policy ` such that

min
W ∈Γ

PrS' [W]` (G� |= i) ≥ d,

or return False if no such policy could be found.

Thus, we want to find a single Markov policy ` with a lower bound on the satisfaction
probability that is robust against all possible values of the (unknown) parameter W ∈ Γ.
In doing so, we assume that the unknown parameter W ∈ Γ is unobservable to the Markov
policy. As in Chapter 6, we will solve Problem 7.5 up to a user-specified confidence
probability due to the noise of unknown distribution.

7.1.3 Overview of our abstraction technique
The main contribution that allows us to be robust against parameter uncertainty, is that
we reason over sets of potential transitions (as shown by the boxes in Fig. 7.1), rather
than precise transitions as in Chapter 6. Intuitively, for a given action, the stochastic
uncertainty creates a probability distribution over sets of possible outcomes. To ensure
robustness against parameter uncertainty, we consider all possible outcomes within these
sets. We show that, for RDTSSs with linear transition functions, computing these sets of
all possible outcomes is computationally tractable. Crucially, the correctness guarantees
from Chapters 5 and 6 carry over to the setting in this chapter.

Outline | This chapter is organized as follows. In Sect. 7.2, we present our method
for abstracting an RDTSS into a finite interval Markov decision process (IMDP) that
soundly captures both the stochastic and parameter uncertainty. Then, in Sect. 7.3, we
present a concrete algorithm to solve the RDTSS policy synthesis problem in Problem 7.5.
In Sect. 7.4, we present numerical experiments that demonstrate the effectiveness of
our approach. Finally, we discuss related work in Sect. 7.5, and we discuss the open
challenges and promising directions for future research in Sect. 7.6.

7

7.2 Parameter Robustness in IMDP Abstractions 121

7.2 Parameter Robustness in IMDP Abstractions
Similar to Chapter 6, we solve Problem 7.5 using an IMDP abstraction. However, adding
the robustness against any parameter value W ∈ Γ means that the abstraction algorithm
changes significantly. In particular, we will introduce a so-called nominal model that
neglects both the stochastic noise and parameter uncertainty. We will then define the
actions of this IMDP via backward reachability computations on this nominal model. We
compensate for the error caused by this modeling simplification in the IMDP’s transition
probability intervals.

7.2.1 Nominal dynamics model
To build our abstraction, we rely on a nominal model that neglects both the stochastic
noise and parameter uncertainty in Eq. (7.1), and is thus deterministic. Concretely, we
choose any value Ŵ ∈ Γ (called the nominal parameter value) for which Assumption 7.3
holds and define the nominal model dynamics as

Ĝ:+1 = �(Ŵ)G: + �(Ŵ)D: + @(Ŵ) . (7.2)

Due to the linearity of the dynamics, we can now express the successor state G:+1 with
full uncertainty, from Eq. (7.1), as

G:+1 = Ĝ:+1 + X (W, G: , D:) + e: , (7.3)

with X (W, G: , D:) being a new term, called the epistemic
error

epistemic error, encompassing the error
caused by parameter uncertainty:

X (W, G: , D:) = [�(W) −�(Ŵ)]G: + [�(W) − �(Ŵ)]D: + [@(W) − @(Ŵ)] . (7.4)

In other words, the successor state G:+1 is the nominal one, plus the epistemic error, and
plus the stochastic noise. Note that for W = Ŵ (i.e., the true model parameters equal their
nominal values), we obtain X (W, G: , D:) = 0.

7.2.2 IMDP abstraction of the nominal model
For the nominal model in Eq. (7.2), we generate a finite abstraction in a similar vein
as in Chapter 6. However, to capture the parameter uncertainty in the abstraction, we
immediately obtain an IMDP (whereas we initially obtained an MDP in Chapter 6).

States | The states of the IMDP abstraction are defined equivalently to Chapter 6. That
is, the states of the IMDP abstraction (B Ψ = {V1, . . . ,V!,R

= \ Z} are the elements of
a polyhedral partition Ψ (see Def. 6.7). Recall from Remark 6.10 that '(G) ∈ (denotes
the (unique) IMDP state containing G ∈ R= , whereas '−1(B) ⊂ R= denotes the set of
DTSS states related to B ∈ (.

Actions | We define the IMDP actions via backward reachability computations on the
nominal model in Eq. (7.2). Let T = {T1, . . . ,T@} be a finite collection of @ ∈ N target settarget
sets, each of which is a convex polytope, Tℓ = conv(C1ℓ , . . . , C3ℓ) ⊂ R= , consisting of 3 ∈ N
vertices C1ℓ , . . . , C

3
ℓ ∈ R= . Every target set corresponds to an IMDP action, yielding the set

�2C = {0ℓ : ℓ = 1, . . . , @} of actions. We denote the target set for action 0 ∈ �2C by T0 .

122 7 DTSSs With Uncertain Parameters

reach−1
Ŵ (T0)

B

B′

T0
H (1)

B,0

H (2)
B,0 H (3)

B,0

H (4)
B,0

H (5)
B,0

Figure 7.2: Action 0 ∈ �2C to target set T0 is enabled in states B, B′ ∈ (, as their regions
are contained in the backward reachable set reach−1Ŵ (T0). The successor state
setsH (1)B,0 , . . . ,H (5)B,0 for five noise samples (see Sect. 7.2.3), overapproximated
as boxes, are shown in blue.

Intuitively, action 0 ∈ �2C represents a transition to Ĝ:+1 ∈ T0 feasible under the
nominal model. The one-stepbackward

reachable
set

backward reachable set reach−1Ŵ (T0), shown in Fig. 7.2,
contains precisely these continuous states from which a direct transition to T0 exists:

reach−1Ŵ (T0) =
{
G ∈ R= : ∃D ∈ * , �(Ŵ)G + �(Ŵ)D + @(Ŵ) ∈ T0

}
.

As in Chapter 6, we enable action 0 ∈ �2C in state B ∈ (if and only if Ĝ:+1 ∈ T0 can be
realized from any G: ∈ '−1(B) in the associated region, or in other words, the partition
element '−1(B) must be contained in the backward reachable set. As such, the set
�2CŴ (B) of enabled actions in state B ∈ (under Ŵ ∈ Γ is defined as

�2CŴ (B) =
{
0 ∈ �2C : '−1(B) ⊆ reach−1Ŵ (T0)

}
. (7.5)

Remark 7.6 (Target points vs. target sets) Observe the differences between
Figs. 6.3 and 7.2. Whereas we used a precise target point 30 ∈ R= in Chapter 6,
we here use target sets to accommodate the parameter uncertainty and the milder
Assumption 7.3. Moreover, observe that the backward reachable set shown in Fig. 7.2
has more vertices, which is generally also the case. Finally, as we will discuss later
in Sect. 7.2.3, Fig. 7.2 shows that each sample of the process noise leads to a set
of possible successor states, rather than the precise successor state samples we
obtained in Chapter 6.

To compute the set of enabled actions using Eq. (7.5), we must compute reach−1Ŵ (T0)
for each action 0 ∈ �2C with associated target set T0 . The following lemma shows that
reach−1Ŵ (T0) is a polytope characterized by the vertices of * and T0 , which is computa-
tionally tractable to compute. The intuition is that T0 and * are convex polytopes, so
the inverse of the dynamics of the nominal model in Eq. (7.2) is also a convex polytope,
which is exactly characterized by the vertices of* and T0 .

7

7.2 Parameter Robustness in IMDP Abstractions 123

Lemma 7.7 (Backward reachable set as convex polytope) Let the control
space * = conv(D1, . . . , D@), @ ∈ N, and the target set T0 = conv(C1, . . . , C3), 3 ∈ N,
of action 0 ∈ �2C be given in their vertex representations. Under Assumption 7.3,
we have that

reach−1Ŵ (T0) = conv(Ḡ8 9 : 8 = 1, . . . , 3, 9 = 1, . . . , @), (7.6)

where Ḡ8 9 is the unique solution of the linear equation system

�(Ŵ)Ḡ8 9 + �(Ŵ)D 9 + @(Ŵ) = C8 . (7.7)

Proof. We first prove that Eq. (7.6) holds with inclusion, i.e.,

conv(Ḡ8 9 : 8 = 1, . . . , 3, 9 = 1, . . . , @) ⊆ reach−1Ŵ (T0). (7.8)

Let I be any element belonging to the right-hand side of Eq. (7.6), i.e. I ∈ conv(Ḡ8 9 :
8 = 1, . . . , 3, 9 = 1, . . . , @). Then, there exists \8 9 , 8 = 1, . . . , 3, 9 = 1, . . . , @, such that

\8 9 ≥ 0,
3,@∑
8, 9=1

\8 9 = 1, I =

3,@∑
8, 9=1

\8 9 Ḡ8 9 .

For each vertex D 9 of * , 9 = 1 . . . , @, let b 9 =
∑3

8=1 \8 9 and write the control input D
corresponding to point I:

D =

@∑
9=1

b 9D
9 , D ∈ * ,

which is admissible by construction. Now, note that the mapping of the pair (I,D)
under the dynamics satisfies

�(Ŵ)I + �(Ŵ)D + @(Ŵ) =
3,@∑
8, 9=1

\8 9�(Ŵ)Ḡ8 9 +
@∑
9=1

b 9�(Ŵ)D 9 + @(Ŵ)

=

3,@∑
8, 9=1

\8 9
(
�(Ŵ)Ḡ8 9 + �(Ŵ)D 9 + @(Ŵ)

)
=

3∑
8=1

\̄8C
8 ∈ T0,

where the first equality follows from the definition of I and D, the second by the
definition of b 9 =

∑3
8=1 \8 9 , and the third by letting \̄8 =

∑@

9=1 \8 9 and noting that∑3
8=1 \̄8 = 1 and \̄8 ≥ 0 for all 8 = 1, . . . , 3 . In other words, the mapping of the pair
(I,D) belongs to the target set T0 , which implies that Eq. (7.8) holds by construction.
This concludes the first part of the lemma.

To show the opposite direction in Eq. (7.6), let I be any element in reach−1Ŵ (T0).
By the definition of reach−1Ŵ (T0), this means that there exist b 9 ≥ 0 and \8 ≥ 0,

124 7 DTSSs With Uncertain Parameters

8 = 1, . . . , 3, 9 = 1, . . . , @, with
∑@

9=1 b 9 = 1 and
∑3

8=1 \8 = 1, such that

�(Ŵ)I + �(Ŵ)
(

@∑
9=1

b 9D
9

)
+ @(Ŵ) =

3∑
8=1

\8C
8 . (7.9)

In other words, if I ∈ reach−1Ŵ (T0) then there exists an input D ∈ * such that �(Ŵ)I +
�(Ŵ)D + @(Ŵ) ∈ T0 . By substituting (7.7) into (7.9), we obtain

�(Ŵ)I + �(Ŵ)
@∑
9=1

b 9D
9 + @(Ŵ) =

3∑
8=1

\8

(
�(Ŵ)Ḡ8: + �(Ŵ)D: + @(Ŵ)

)
�(Ŵ)I =

3∑
8=1

\8

(
�(Ŵ)Ḡ8: + �(Ŵ)D:

)
− �(Ŵ)

@∑
9=1

b 9D
9 , (7.10)

for all : = 1, . . . , @. Multiplying both sides of (7.10) by �(Ŵ)−1, which is allowed due
to Assumption 7.3, yields

I =

3∑
8=1

\8
(
Ḡ8: +�(Ŵ)−1�(Ŵ)D:

)
−�(Ŵ)−1�(Ŵ)

@∑
9=1

b 9D
9 . (7.11)

Since Eq. (7.11) holds for all : = 1, . . . , @, we can multiply both sides by b: for each
: = 1, . . . , @, and sum up the resulting expression. As

∑@

:=1 b: = 1, we obtain

I =

3,@∑
8,:=1

\̄8: Ḡ8: +�(Ŵ)−1�(Ŵ)
@∑

:=1

b:D
: −�(Ŵ)−1�(Ŵ)

@∑
9=1

b 9D
9 , (7.12)

where \̄8: = b:\8 , which is larger than or equal to zero for all 8 = 1, . . . , 3, , : = 1, . . . , @.
Since the last two terms on the right-hand side of (7.12) cancel out and

∑3,@

8,:=1 \̄8: = 1,
we conclude that I ∈ conv(Ḡ8 9 : 8 = 1, . . . , 3, 9 = 1, . . . , @), thus proving the opposite
inclusion and concluding the proof of the lemma. �

Transition probabilities | So far, we have established that taking the abstract action
0 ∈ �2C (B) enabled in state B ∈ (corresponds to transitioning to a continuous successor
state that satisfies Ĝ:+1 = �(Ŵ)G: + �(Ŵ)D: + @(Ŵ) ∈ T0 . Recall from Eq. (7.3) that the
actual continuous successor state is G:+1 = Ĝ:+1 + X (W, G: , D:) + e: , which is, for all
Ĝ:+1 ∈ T0 and W ∈ Γ, a random variable. In other words, for a given action 0 ∈ �2C ,
fixing a value for Ĝ:+1 ∈ T0 and W ∈ Γ leads to a distribution over continuous successor
states in R= . By integrating this distribution to the set '−1(B′) ⊂ R= related to each
abstract state B′ ∈ (, we obtain the transition probabilities of our abstraction. However,
the precise values of Ĝ:+1 ∈ T0 and W ∈ Γ are not determined, so we instead define a set
of possible transition probabilities P(B, 0) (B′) for all B, B′ ∈ (and 0 ∈ �2C (B):

P(B, 0) (B′) =
{
P
{
l ∈ Ω : Ĝ:+1 + X (W, G: , D:) + e: ∈ '−1(B′)

}
: Ĝ:+1 ∈ T0, W ∈ Γ

}
.

7

7.2 Parameter Robustness in IMDP Abstractions 125

Two factors prevent us from computing this set of probabilities P(B, 0) (B′):

1. the nominal successor state Ĝ:+1 and the epistemic error X (W, G: , D:) are non-
deterministic, and

2. the distribution of the noise e: is unknown.

We deal with the nondeterminism of the nominal successor state in the following
paragraph while addressing the stochastic noise in Sect. 7.2.3.

Capturing nondeterminism | We capture the nondeterminism in the nominal suc-
cessor state Ĝ:+1 and the epistemic error X (W, G: , D:) in a single set that we reason robustly
against. First, we define the set ΔB of all possible epistemic errors for any G: ∈ '−1(B)
in Eq. (7.4) as

ΔB =
{
X (W, G: , D:) : W ∈ Γ, G: ∈ '−1(B), D: ∈ *

}
.

Then, the successor state G:+1 (upon choosing action 0 ∈ �2C in state G: ∈ '−1(B), B ∈ ()
is an element of a set that we denote byHB,0 :

G:+1 ∈ T0 + ΔB + e: = HB,0 . (7.13)

Observe thatHB,0 is a random variable defined by e: , such that for all l ∈ Ω, we have
T0 + ΔB + e: (l) = HB,0 (l). Based on the setHB,0 , we have for all ? ∈ P(B, 0) (B′) that

P
{
l ∈ Ω : HB,0 (l) ⊆ '−1(B′)

}
≤ ? ≤ P

{
l ∈ Ω : HB,0 (l) ∩ '−1(B′) ≠ ∅

}
.

(7.14)

In other words, Eq. (7.14) defines a lower and upper bound on the set of transition
probabilities P(B, 0) (B′) for all B, B′ ∈ (and 0 ∈ �2C (B). The lower bound follows from
Eq. (7.13), since if HB,0 ⊆ '−1(B′), then G:+1 ∈ '−1(B′) for any G:+1 ∈ HB,0 . The upper
bound holds, since by Eq. (7.13) we have that G:+1 ∈ HB,0 , and thus, if G:+1 ∈ '−1(B′),
then the intersectionHB,0 ∩ '−1(B′) must be nonempty.

Before describing our sampling-based method to bound Eq. (7.14), we show with the
following lemma that ΔB is a subset of a convex polytope, which is characterized by the
region '−1(B), the feasible control space* , and the model dynamics.

Lemma 7.8 (Representation of the epistemic error) Given the vertex repres-
entations of sets '−1(B) = conv(E1, . . . , E?) and* = conv(D1, . . . , D@) for ?, @ ∈ N, it
holds that

ΔB ⊆ conv
((
�] −�(Ŵ)

)
E 9 +

(
�] − �(Ŵ)

)
Dℓ +

(
@] − @(Ŵ)

)
:] = 1, . . . , A , 9 = 1, . . . , ?, ℓ = 1, . . . , @

)
,

(7.15)

where �1, . . . , �A , �1, . . . , �A , and @1, . . . , @A are as defined in Sect. 7.1.1.

126 7 DTSSs With Uncertain Parameters

Proof. First, let us fix any W ∈ Γ, and observe that ΔB evaluated at W is written as

ΔB (W) =
{
X (W, G: , D:) : G: ∈ '−1(B), D: ∈ *

}
(7.16)

=

{
(�(W) −�(Ŵ))G: + (�(W) − �(Ŵ))D: + @(W) − @(Ŵ)

: G: ∈ '−1(B), D: ∈ *
}
.

We observe that the sets {(�(W) − �(Ŵ))G: : G: ∈ '−1(B)} and {(�(W) − �(Ŵ))D: :
D: ∈ * } are both convex polytopes characterized by the vertices of '−1(B) and * ,
respectively. Thus, we rewrite Eq. (7.16) as

ΔB (W) = conv
(
(�(W) −�(Ŵ))E 9 + (�(W) − �(Ŵ))Dℓ + @(W) − @(Ŵ)

: 9 = 1, . . . , ?, ℓ = 1, . . . , @
)
.

Note that the full set ΔB is the union of ΔB (W) over all W ∈ Γ:

ΔB =
⋃
W ∈Γ

ΔB (W) ⊆ conv
(
(�(W) −�(Ŵ))E 9 + (�(W) − �(Ŵ))Dℓ + @(W) − @(Ŵ)

: 9 = 1, . . . , ?, ℓ = 1, . . . , @, W ∈ Γ
)
. (7.17)

Crucially, observe that for any fixed pair of vertices Ē B E 9 and D̄ B Dℓ , where
9 = 1, . . . , ? and ℓ = 1, . . . , @, we can write the convex hull in Eq. (7.17) in terms of only
the matrices �], �] for] = 1, . . . , A of which �(W) and �(W) are a convex combination
(as in Sect. 7.1.1):

conv
(
(�(W) −�(Ŵ))Ē + (�(W) − �(Ŵ))D̄ + @(W) − @(Ŵ) : W ∈ Γ

)
= conv

(
(�(W) −�(Ŵ))Ē + (�(W) − �(Ŵ))D̄ + @(W) − @(Ŵ) : W = 41, . . . , 4A

)
= conv

(
(�] −�(Ŵ))Ē + (�] − �(Ŵ))D̄ + @(W) − @(Ŵ) :] = 1, . . . , A

)
,

where 4] ∈ RA is the vector with all components equal to 0, except the]th, which is 1.
The last equality holds, since �(4]) = �] , �(4]) = �] , and @(4]) = @] for any] = 1, . . . , A .
In other words, considering the values W ∈ Γ \ {41, . . . , 4A } in Eq. (7.17) is redundant
since these values can be expressed as a convex combination of W ∈ {41, . . . , 4A }. As a
result, we simplify Eq. (7.17) as

ΔB ⊆ conv
((
�] −�(Ŵ)

)
E 9 +

(
�] − �(Ŵ)

)
Dℓ +

(
@] − @(Ŵ)

)
:] = 1, . . . , A , 9 = 1, . . . , ?, ℓ = 1, . . . , @

)
,

which equals Eq. (7.15). This concludes the proof of Lemma 7.8. �

7

7.2 Parameter Robustness in IMDP Abstractions 127

Figure 7.3: Overapproximation of ΔB obtained from Lemma 7.8, shown as the red hull,
versus sampled (blue) points in ΔB for different G: ∈ '−1(B) and D: ∈ * .

Remark 7.9 (Eq. (7.15) does not hold with equality) It may be tempting to con-
clude that Eq. (7.15) holds with equality. However, we show with a simple example
that this is not the case. Specifically, we apply Lemma 7.8 to a model as in Eq. (7.1)
with the matrices

�1 =

[
0.9 1
0 0.9

]
, �2 =

[
1.1 1
0 1.1

]
, �(Ŵ) =

[
1 1
0 1

]
,

�1 = �2 = �(Ŵ) =
[
1
1

]
, '−1(B) = [0, 1]2, * = [−5, 5],

and with @1 = @2 = 0. The resulting right-hand side of Eq. (7.15) is shown by the
dashed hull in Fig. 7.3. Moreover, to approximate ΔB , we compute X (W, G: , D:) for
many linearly spaced points W ∈ Γ, G: ∈ '−1(B), and D: ∈ * , which are shown by
the blue dots in Fig. 7.3. While the convex hull is a sound overapproximation of the
set ΔB , the opposite is clearly not the case (there are points in the convex hull that are
not included in ΔB). This result empirically shows that Eq. (7.15) in Lemma 7.8 does
not hold with equality.

7.2.3 PAC probability intervals
The probability interval in Eq. (7.14) depends on the noise e: , whose density function is
unknown. We show how to compute PAC bounds on this interval by sampling a set of
∈ N samples of the noise, denoted by e (1)

:
, . . . , e

(#)
:

. As in Chapter 6, this set of #
noise samples is an element from the probability space Ω# equipped with the product
probability P# and the product f-algebra. Observe from Eq. (7.13) that each sample e (])

:
,

] = 1, . . . , # , yields a set H (])B,0 (as shown in Fig. 7.2) that contains the successor state
under that value of the noise, i.e.,

G
(])
:+1 ∈ T0 + ΔB + e (]):

= H (])B,0 .

For reasons of computational performance, we overapproximate each set H (])B,0 as the
smallest hyperrectangle in R= , by taking the point-wise minimum and maximum over
the vertices ofH (])B,0 .

128 7 DTSSs With Uncertain Parameters

7.2.3.1 Lower bounds from the scenario approach
We interpret the lower bound in Eq. (7.14) within the sampling-and-discardingscenario

approach
scenario

approach [CG11]. This interpretation is very similar to that in Sect. 6.3; however, each
sample is a set rather than a point in the state space R= .

Analogous to the scenario optimization program presented in Sect. 6.3, let & ⊆
{1, . . . , # } be a subset of the noise samples that will be discarded from the scenario
optimization program. Then, for a fixed triple (B, 0, B′) ∈ (× �2C × (, consider the
following convex program:

L
&

B,0,B′ : minimize
_≥0

_

subject to H (])B,0 ⊆ '−1(B′) (_) ∀] ∈ {1, . . . , # } \&,
(7.18)

where '−1(B′) (_) is a version of '−1(B′) scaled by a factor _ around a Chebyshev center
of '−1(B′) (as defined in Sect. 6.3). The optimal point _★ to L

&

B,0,B′ defines a region
'−1(B′) (_★) such that, for all] ∈ {1, . . . , # } \& , the setH (])B,0 for sample e (])

:
is contained

in '−1(B′) (_★).
We again use Def. 6.25 to construct a sequence of strictly increasing subsets

&0, &1, . . . , &# ⊂ {1, . . . , # } of discarded samples (i.e., such that &0 ⊂ &1 ⊂ · · · ⊂ &#),
where at each step, we add the unique active constraint from the previous solution.
Let us denote _★ℓ as the optimal solution to problem L

&ℓ

B,0,B′ . As a result, it follows that
_★0 < _★1 < · · · < _★

#
with probability one.

For every transition (B, 0, B′), let us define # out
B,0,B′ ≤ # as the number of samplesH (])B,0

that are not fully contained in '−1(B′):

out
B,0,B′ B

��{] ∈ {1, . . . , # } : H (])B,0 * '
−1(B′)

}��.
We adapt Theorem 6.19 to lower bound the probability that an l ∈ Ω drawn according
to P yields HB,0 (l) ⊆ '−1(B′) (_★). This leads to the following lower bound on the
transition probability.1

Lemma 7.10 (Lower bound probability) Let e (1)
:
, . . . , e

(#)
:

be a set of # ∈ N
samples of the noise e: , and let V ∈ (0, 1) be a confidence parameter. For fixed
B, B′ ∈ (and 0 ∈ �2C (B), define H (])B,0 = T0 + ΔB + e (]):

and determine the value of
out
B,0,B′ ≤ # . Then, it holds that

P#
{
(e (1)

:
, . . . , e

(#)
:
) ∈ Ω# : P

{
l ∈ Ω : HB,0 (l) ⊆ '−1(B′)

}
≥ ?̌

}
≥ 1 − V

2
,

where ?̌ = 0 if # out
B,0,B′ = 0, and otherwise, ?̌ is the solution to

V

2#
=

out
B,0,B′∑
8=0

(
#

8

)
(1 − ?̌)8 ?̌#−8 .

1Analogous to Sect. 6.3, one can readily show that the technical requirements needed to apply the results
from [RPM23] are satisfied for the scenario program Eq. (7.18).

7

7.2 Parameter Robustness in IMDP Abstractions 129

Proof. The proof follows analogous to that of Theorem 6.19, adapted to the scenario
optimization program in Eq. (7.18). Recall that this program considers a constraint
H (])B,0 ⊆ '−1(B′) (_) for all] ∈ {1, . . . , # } \& , whereas the program in Eq. (6.14) instead
has constraints 30 + e (8):

∈ '−1(B′) (_). Since the proof is so similar, we omit it here
and refer to [6] for the complete proof. �

7.2.3.2 Upper Bounds from Hoeffding’s Inequality

As we show in [6, Appendix A], the scenario approach might lead to conservative
estimates of the upper bound in Eq. (7.14). Thus, we instead apply Hoeffding’s

inequality
Hoeffding’s inequal-

ity [BLM13] to infer an upper bound ?̂ of the probability P{l ∈ Ω : HB,0 (l) ∩'−1(B′) ≠
∅} in Eq. (7.14). Concretely, this probability describes the parameter of a Bernoulli
random variable, which has value 1 if HB,0 (l) ∩ '−1(B′) ≠ ∅ and 0 otherwise. The
sample sum #∩

B,0,B′ of this random variable is given by the number of sets H (])B,0 that
intersect with region '−1(B′), i.e.,

#∩B,0,B′ B
��{] ∈ {1, . . . , # } : H (])B,0 ∩ '−1(B′) ≠ ∅

}��.
Using Hoeffding’s inequality, we obtain the following upper bound on the transition
probability in Eq. (7.14).

Lemma 7.11 (Upper bound probability) Let e (1)
:
, . . . , e

(#)
:

be a set of # ∈ N
samples of the noise e: , and let V ∈ (0, 1) be a confidence parameter. For fixed
B, B′ ∈ (and 0 ∈ �2C (B), define H (])B,0 = T0 + ΔB + e (]):

and determine the value of
#∩
B,0,B′ ≤ # . Then, it holds that

P#
{
(e (1)

:
, . . . , e

(#)
:
) ∈ Ω# : P

{
l ∈ Ω : HB,0 (l) ∩ '−1(B′) ≠ ∅

}
≤ ?̂

}
≥ 1 − V

2
,

where the upper bound ?̂ is computed as

?̂ = min

{
1,

#∩
B,0,B′

#
+

√
1
2#

log
(2
V

)}
.

Proof. Assume we are given # samples of a Bernoulli random variable with unknown
probability ? , and with sample sum denoted by #̄ ∈ {0, . . . , # }. For this Bernoulli
random variable, Hoeffding’s inequality [BLM13] states that

P#
{
?# ≤ #̄ + Y#

}
≥ 1 − 4−2Y2# , (7.19)

for all Y > 0. Thus, the expected value ?# over # samples is upper bounded by the
sample sum #̄ plus the value of Y. We are interested in the unknown probability ?

130 7 DTSSs With Uncertain Parameters

instead of the sum over # samples, so we rewrite Eq. (7.19) as

P#
{
? ≤ #̄

#
+ Y

}
≥ 1 − 4−2Y2# . (7.20)

Moreover, let V

2 = 4−2Y
2# and rewrite Eq. (7.20) as

P#
{
? ≤ #̄

#
+

√
1
2#

log(2
V
)
}
≥ 1 − V

2
. (7.21)

In Lemma 7.11, the unknown probability ? is the probability that for a random l ∈ Ω,
the setHB,0 (l) intersects with the region '−1(B′):

? = P
{
l ∈ Ω : HB,0 (l) ∩ '−1(B′) ≠ ∅

}
,

such that its sum #̄ over # samples becomes

#̄ = #∩B,0,B′ .

Note that probability ? in Eq. (7.21) cannot exceed 1, so we obtain

P#

{
? ≤ min

{
1,

#∩
B,0,B′

#
+

√
1
2#

log
(2
V

)}}
≥ 1 − V

2
,

which equals the desired expression. This concludes the proof of Lemma 7.11. �

7.2.3.3 Probability Intervals with PAC Guarantees

By combining Lemmas 7.10 and 7.11, we obtain the following PAC probability interval
for each individual transition (B, 0, B′) ∈ (×�2C × (of the IMDP abstraction.

Theorem 7.12 (PAC probability interval) For fixed B, B′ ∈ (and 0 ∈ �2C (B), let
e
(1)
:
, . . . , e

(#)
:

be a set of # ∈ N samples of the noise e: . For the collection (H (])B,0)#]=1,
compute ?̌ and ?̂ using Lemmas 7.10 and 7.11. Then, the transition probability
% (B, 0) (B′) is bounded by

P#
{
(e (1)

:
, . . . , e

(#)
:
) ∈ Ω# : ?̌ ≤ % (B, 0) (B′) ≤ ?̂

}
≥ 1 − V. (7.22)

Proof. Theorem 7.12 follows directly by combining Lemmas 7.10 and 7.11 via the
union bounda with the probability interval in Eq. (7.14), which asserts that these
bounds are both correct with a probability of at least 1 − V . �

aThe union bound (Boole’s inequality) states that the probability that at least one of a finite set of
events happens, is upper bounded by the sum of the probabilities of these events [CB21].

Observe that the statistical guarantee in Theorem 7.12 is for an individual transition
probability interval. In Sect. 7.3, we will lift this guarantee on individual transitions to a
guarantee on the whole IMDP abstraction.

7

7.3 Abstraction Algorithm 131

7.2.3.4 Counting samples
Theorem 7.12 requires two ingredients:
1. the sample counts # out

B,0,B′ (fully outside of '−1(B′)) and #∩
B,0,B′ (at least partially

contained in '−1(B′)), and
2. the confidence probability V .

Thus, the problem of computing probability intervals reduces to a counting problem on
the samples.

Merging samples | To reduce the complexity of this counting procedure, we merge
samples that are very similar into a single, overapproximating sample. Formally, let
b > 0 be a tuning parameter that reflects the maximum distance for two samples to be
merged. We merge two samplesHB,0 andH ′B,0 if their centers, denoted by ℎ ∈ HB,0 and
ℎ′ ∈ H ′B,0 are at most a b-distance apart, i.e.,

‖ℎ − ℎ′‖2 ≤ b . (7.23)

If Eq. (7.23) holds, we define one larger setH ′′B,0 ⊇ HB,0 ∪H ′B,0 (without loss of generality,
we defineH ′′B,0 as a hyperrectangle for simplicity). Then, to determine sets # out

B,0,B′ and
#∩
B,0,B′ , a merged sample set is associated with the number of samples that it represents.

For example, ifH ′′B,0 ⊆ '−1(B′) (i.e., the merged sample that representsHB,0 andH ′B,0 is
contained in '−1(B′)), we add 2 to the value of # out

B,0,B′ . Doing so yields more conservative
yet sound estimates of the counts # out

B,0,B′ and #
∩
B,0,B′ , and thus also of the PAC probability

intervals. It is easily verified that as b → 0, the number of merged samples converges to
zero as well.

Heuristic for merging samples | Determining the best way to merge samples is a
problem of combinatorial complexity. In our implementation, we thus use a heuristic in
which we greedily try to merge samples by following three steps:
1. Select a sample, denoted byHB,0 , that has not been merged yet.
2. Merge this sample with all other (non-merged) samples for which Eq. (7.23) holds,

and we remove these samples from the list of non-merged samples. MarkHB,0 as a
merged sample, even if no samples are within a b-distance ofHB,0 .

3. Repeat until no non-merged samples remain.
Because we mark a sample as merged even if no samples are within a b-distance of it,
this heuristic terminates in at most # iterations.

While the improvement in computational complexity strongly depends on the model
at hand, we observe significant improvements in the experiments in Sect. 7.4. For
example, for the numerical experiments in Sect. 7.4, we used 20 000 samples to compute
probability intervals, but using the proposed merging procedure with b = 0.01, we
reduced this to around 1 000 merged samples.

7.3 Abstraction Algorithm
We present a variant of Algorithm 6.1 to solve Problem 7.5 based on the IMDP abstraction
proposed in this chapter. Recall that Algorithm 6.1 consists of an offline planning phase,

132 7 DTSSs With Uncertain Parameters

in which we create the IMDP and compute a robust optimal policy, and an online
control phase in which we automatically derive a provably-correct Markov policy for
the continuous model. Upon termination, the algorithm either returns a scheduler that
can be used to solve Problem 7.5, or that no such satisfactory scheduler could be found.
For concineness, we only describe the changes compared to Algorithm 6.1.

Enabled IMDP actions | Recall that we define the IMDP actions via backward reach-
ability computations under the nominal model in Eq. (7.2), which is defined for a fixed
nominal parameter value Ŵ ∈ Γ. Hence, we replace line 5 of Algorithm 6.1 by Eq. (7.5)
for the definition of the enabled actions �2CŴ (B) in IMDP state B ∈ (.

Computing probability intervals | Similar to Algorithm 6.1, we compute PAC
probability intervals for the IMDP abstraction. However, we now use Theorem 7.12 to
compute these intervals, thus modifying line 11 of the original algorithm.

Interface function | Recall from Theorem 5.17 and Corollary 5.25 that by restricting
the Markov policy ` to an interface function (for the relation induced by the IMDP
abstraction), the lower bound on the reach-avoid probability on the IMDP carries over
to the DTSS (under that Markov policy). We again leverage this result to derive a
control for the RDTSS based on an optimal robust scheduler for the IMDP abstraction.
Specifically, let �f

'
: - ×{0, . . . , ℎ − 1} → 2* be the interface function for IMDP scheduler

f ∈ SMIMarkov, which is defined for all G ∈ - and : ∈ {0, . . . , ℎ − 1} as

�f' (G, :) B
{
D ∈ * : �(Ŵ)G + �(Ŵ)D + @(Ŵ) ∈ T0, 0 = f: (B)

}
. (7.24)

As we shall see, restricting the Markov policy to this interface function leads to a solution
to Problem 7.5.

7.3.1 Solving Problem 7.5 with high probability
Analogous to Theorem 6.29, we show that our modified version of Algorithm 6.1 yields,
with a probability of at least 1 − V · |�2C | · |(|, a solution to Problem 6.6. In other words,
termination of the algorithm implies that, with a probability of at least 1 − V · |�2C | · |(|,
we have found a solution to Problem 7.5.

Theorem 7.13 (Solution to Problem 7.5) Let S' = (-,* , Γ, G� , e, �) be an
RDTSS with a reach-avoid specification i = (-) , -* , ℎ), and let d ∈ [0, 1]. Suppose
that Algorithm 6.1 (with the modifications above) terminates and returns the optimal
robust scheduler f̌★ ∈ SMIMarkov. Then, it holds that

P#
{
(e (1)

:
, . . . , e

(#)
:
) ∈ Ω# : min

W ∈Γ
PrS' [W]` (G� |= i) ≥ d

}
≥ 1 − V · |�2C | · |(|,

where `: (G) ∈ � f̌
★

'
(G, :) for all G ∈ - and : ∈ {0, . . . , ℎ − 1}, and where the interface

function � f̌★

'
is defined by Eq. (7.24).

Proof. The proof is analogous to that of Theorem 6.29, so we only provide a sketch
here, while referring to [6] for details. Termination of the algorithm implies that the

7

7.4 Experimental Evaluation 133

optimal reach-avoid probability on the IMDP is at least d . Since the abstract IMDP is
“correct” with a probability of at least 1 − V · |�2C | · |(|, this reach-avoid probability
carries over to the RDTSS with this same probability. Thus, with a probability of at
least 1 − V · |�2C | · |(|, it holds that

min
W ∈Γ

PrS' [W]` (G� |= i) ≥ d,

which concludes the proof. �

7.4 Experimental Evaluation
We perform experiments on three benchmarks to answer the question: “Can our method
synthesize Markov policies that are robust against set-bounded uncertainty in parameters?”
We implement our approach in our Python tool DynAbs, which we present in more
detail in Chapter 14. When DynAbs returns an optimal robust IMDP scheduler f̌★, then
it is guaranteed (with the specified confidence probability) to solve Problem 7.5 as per
Theorem 7.13. For all experiments, we use a confidence probability in Theorem 7.13
of V = 10−8 on every unique probability interval, which (depending on the size of the
IMDP) leads to an overall confidence of 1 − V · |�2C | · |(|.

Reproducibility | The Python code to reproduce the experimental results is provided
with DynAbs; see Chapter 14 for details. All experiments in this chapter are run on a
computer with 32 3.7GHz cores and 64 GB of RAM.

7.4.1 Longitudinal drone dynamics
Consider again Example 7.4 of a drone with an uncertain mass< ∈ [0.75, 1.25]. We
fix the nominal value of the mass as <̂ = 1 (which can be interpreted as a maximum
likelihood estimate of the mass). To purely show the effect of set-bounded parameter
uncertainty, we set the covariance of the stochastic uncertainty in e: (being a Gaussian
distribution) negligibly small. The control task is to reach a position of ?: ≥ 8 before
time ℎ = 12, while avoiding speeds of |E: | ≥ 10. We create a partition covering
Z = [−10, 14] × [−10, 10] into 24 × 20 regions. We use Theorem 7.12 with # = 20 000
samples of the stochastic noise to compute the probability intervals of the IMDP. We
compare against a baseline that builds an IMDP for the nominal model only, thus
neglecting parameter uncertainty.

Neglecting parameter uncertainty is unsafe | The run time for generating the
abstract IMDPMI and computing an optimal robust scheduler f̌★ is around 3 seconds.
Let+★(B′

�
) denote the robust reach-avoid probability on the IMDP under the maximizing

scheduler f̌★ from initial state B′
�
∈ (:

+★(B′�) B max
f∈SMIMarkov

min
g∈TMIMarkov

PrMIf,g (B′� |= ¬(* U≤ℎ (�).

To validate that Theorem 7.13 holds in practice, we estimate (using Monte Carlo simula-
tions) the reach-avoid probability PrS' [W]` (G� |= i) on the RDTSS for different parameter
valuesW ∈ Γ. We say that the Markov policy ` is safe for parameterW ∈ Γ and initial state

134 7 DTSSs With Uncertain Parameters

< = 1.00 < = 0.75 < = 0.50
60%

80%

100%

Boundary of Γ

True system parameter

%
of

in
iti
al
st
at
es

Our approach
Neglecting uncertainty

(a) Only mass uncertain.

< = 1.00
Z = 0.50

< = 0.90
Z = 0.60

< = 0.80
Z = 0.70

60%

80%

100%

Boundary of Γ

True system parameter

%
of

in
iti
al
st
at
es

Our approach
Neglecting uncertainty

(b) Mass and friction coefficient uncertain.

Figure 7.4: Percentage of initial states G� where +̄ (G� , W, `) ≥ d holds (% of safe initial
states) for different values of W . Figures (a) and (b) show the results for
the drone model with one and two uncertain parameters, respectively. Our
approach that accounts for parameter uncertainty leads to correct results
for all parameter values W ∈ Γ in the uncertainty set, whereas neglecting
uncertainty does not.

G� if the estimated reach-avoid probability, which we denote by +̄ (G� , W, `), is indeed
above the required threshold d , i.e.,

+̄ (G� , W, `) ≥ d. (7.25)

As per Theorem 7.13, for each triple (G� , W, `), we expect this inequality to hold with
probability at least 1 − V · |�2C | · |(|.

In Fig. 7.4a, we show the percentage of initial states G� where Eq. (7.25) holds, for
different values of the uncertain parameter W . With our approach, Eq. (7.25) holds
for all parameter values W ∈ Γ (and even beyond this set). By contrast, neglecting
the parameter uncertainty (by reasoning over the nominal mass <̂ = 1 only) leads to
incorrect results. We show simulated trajectories under an actual mass < = 0.75 in
Fig. 7.5. These trajectories confirm that our approach safely reaches the goal region
while the baseline does not, as it neglects parameter uncertainty, which is equivalent to
assuming Δ8 = 0 in Eq. (7.13).

Multiple uncertain parameters | To show that our approach is applicable to models
with multiple uncertain parameters, we extend the drone model with an uncertain spring
coefficient Z ∈ R, yielding the following model:

G:+1 =

[
?:+1
E:+1

]
=

[
1 XC

− Z

<
1 − 0.1XC

<

]
G: +

[
X2C
2<
XC
<

]
D: + e: .

To write this model in the form of Eq. (7.1), we need four matrices �1, . . . , �4 and
�1, . . . , �4, which are defined for the combinations of the minimum/maximum mass and
spring coefficient. We constrain the mass to 0.9 ≤ < ≤ 1.1 and the spring coefficient to
0.4 ≤ Z ≤ 0.6. We fix their nominal values as <̂ = 1 and Ẑ = 0.5. Fig. 7.4b shows that our

7

7.4 Experimental Evaluation 135

PositionPosition

Ve
lo

ci
ty

Our robust approach Baseline (no epist.unc.)

Figure 7.5: With our approach, the system safely reaches the goal (in green). By contrast,
the baseline neglecting set-bounded parameter uncertainty leaves the safe
set (gray box), as it underestimates the successor state setsHB,0 defined in
Eq. (7.13) (red boxes).

approach again results in correct results (well beyond the uncertainty set Γ), whereas
neglecting parameter uncertainty does not. This result confirms that our approach can
be used to solve Problem 7.5, also in the presence of multiple uncertain parameters.

7.4.2 Building temperature control
We consider a temperature control problem for a 5-room building, each with a dedicated
radiator that has an uncertain power output of ±10% around its nominal value. The 10D
state of this model captures the temperatures of 5 rooms and 5 radiators. The goal is to
maintain a temperature within 21 ± 2.5 ◦C for 15 steps of 20min.

Dynamics | Each room 8 = 1, . . . , 5 is modeled by its (zone) temperature) I
8
∈ R and

radiator temperature) A
8 ∈ R. Each room has a scalar control input) ac

8 ∈ R reflecting
the air conditioning (ac) temperature, which is constrained to 15 ≤) ac

8 ≤ 30. The
change in the temperature of zone 8 depends on the temperatures in the subset of
neighboring rooms, denoted by J ⊆ {1, . . . , 5} \ {8}. Thus, the thermodynamics of the
room temperature) I

8
and radiator temperature) A

8 of room 8 are

¤) I
8 =

1
�8

[∑
9∈J

) I
9
−) I

8

'8, 9
+
)wall −) I

8

'8,wall
+<�?0 () ac

8 −) I
8) + %8 () A

8 −) I
8)

]
¤) A
8 = :1() I

8 −) A
8) + :0F () boil

8 −) A
8),

where �8 is the thermal capacitance of zone 8 , '8, 9 is the resistance between zones 8 and
9 ,)wall is the wall temperature,< is the air mass flow, �?0 is the specific heat capacity
of air, and %8 is the rated output of radiator 8 . Moreover, :0 and :1 are constants, and
F is the water mass flow from the boiler. In our experiments, we use a discrete-time
representation of the thermodynamics above with additive Gaussian process noise (we
omit an explicit definition for brevity).

Parameter uncertainty | We assume the rated output of each radiator 8 = 1, . . . , 5
to be uncertain, within an interval of 0.8 ≤ %8 ≤ 1.2. Thus, we can model the building
thermodynamics as a linear RDTSS with dynamics of the form in Eq. (7.1). We fix its
nominal value to be %̂8 = 1, so the uncertainty is ±20% around the nominal value.

136 7 DTSSs With Uncertain Parameters

19.0 21.0 23.0

39
.7

42
.5

45
.3

19.0 20.2 21.8 23.0
Room temperatureRoom temperature

0.0

0.2

0.4

0.6

0.8

1.015x25 regions 25x35 regions
R

ad
ia

to
r

te
m

pe
ra

tu
re

19.15 20.35 21.55 22.75

50x70 regions

Room temperature

Figure 7.6: Heatmaps of the satisfaction probabilities on the IMDP for the temperature
control problem (shown for a single room).

Interactions between rooms as nondeterminism | Since a direct partitioning of
the 10D state space is infeasible, we capture any possible thermodynamic interaction
between rooms in the uncertain additive term @: ∈ Q, which lies within a convex set
Q ⊂ R= . Specifically, the set Q8 affecting the thermodynamics of room 8 ∈ {1, . . . , 5} is
defined as follows (recall that -(denotes the safe set):

Q8 =
{ ∑
9∈J

) I
9
−) I

8

'8, 9
:) I ∈ -(

}
.

In other words, the uncertainty set Q is characterized by the maximal difference between
) I
9
and) I

8
within the safe set, for all 9 ∈ J , which is 5 ◦C for this specific reach-avoid

problem (which was defined in Sect. 7.4). Thus, depending on the other parameters, we
can easily derive a set-bounded representation of Q.

Discrete-time dynamics | We discretize the thermodynamics of a single room 8 by a
forward Euler method at a time resolution of 20min. Moreover, we consider an additive
Gaussian process noise e: on the room temperature of distribution N(0, 0.002), and on
the radiator temperature of distribution N(0, 0.01). As the model for room 8 has only
one uncertain parameter (the radiator power output %8), we obtain a model in the form
of Eq. (7.1) with A = 2 matrices (we omit the explicit matrices for brevity).

Partition refinement | We apply our method with an increasingly more fine-grained
state-space partition. In Fig. 7.6, we present, for three different partitions, the maximum
satisfaction probability under the robust optimal IMDP scheduler (for every initial IMDP
state B� ∈ (). These results confirm the idea that partition refinement can lead to Markov
policies with better performance guarantees. A more fine-grained partition leads to
more actions enabled in the abstraction, which in turn improves the robust lower bound
on the reach-avoid probability.

Scalability | We investigate how considering parameter uncertainty affects the scalab-
ility of our approach. To this end, we apply our method with different partition sizes,
and we compare two cases: (1) with the parameter uncertainty, and (2) without the
parameter uncertainty, in which case we assume that the rated power output of each
radiator is %8 = %̂8 = 1. We present the sizes of the obtained IMDPs (measured in terms

7

7.5 Related Work 137

Table 7.1: IMDP sizes and run times for different partitions on the temperature control
problem (considering a single room, decoupled from the others).

Epist.unc. Partition States Transitions Run time [s]
15 × 25 378 84 539 5.64
25 × 35 878 308 845 10.47
35 × 45 1578 2 103 986 25.05
50 × 70 3503 6 149 432 62.50
70 × 100 7003 51 742 285 308.08

Check 15 × 25 378 100 994 5.68
Check 25 × 35 878 463 173 11.49
Check 35 × 45 1578 2 932 224 30.06
Check 50 × 70 3505 9 520 698 80.49
Check 70 × 100 7003 81 763 143 475.35

of the number of edges in the underlying graph) and the run times in Table 7.1. The
run times vary between 5.6 s and 8min for the smallest (15 × 25) and largest (70 × 100)
partitions, respectively. We observe that accounting for parameter uncertainty yields
IMDPs with more transitions and slightly higher run times (for the largest partition: 82
instead of 52 million transitions and 8 instead of 5min). This is due to larger successor
state setsH (])B,0 in Eq. (7.13) caused by the epistemic error Δ8 .

7.5 Related Work
Set-bounded parameter uncertainty is well-suited for modeling epistemic uncertainty
(i.e., uncertainty caused by a lack of knowledge [FÜ11; Sul15]) in the absence of a prior dis-
tribution. Distinguishing aleatoric from epistemic uncertainty is a key challenge towards
trustworthy AI [TLS21], and has been considered in reinforcement learning [CSKG22],
Bayesian neural networks [DHDU18; LSS20], and systems modeling [Smi14]. Dynam-
ical models with set-bounded parameter uncertainty (but without aleatoric uncertainty)
are considered by [Yed14] and [GC06]. Control of models similar to ours is studied
by [Mod22], albeit only for stability specifications.

Model-based approaches | The abstraction-based policy synthesis methods surveyed
in Sect. 5.2 only consider stochastic uncertainty (and not set-bounded parameter uncer-
tainty). Thus, we develop the first abstraction-based formal policy synthesis method
that simultaneously captures set-bounded parameter uncertainty and stochastic uncer-
tainty for models with continuous state and action spaces. Other methods include, for
example, using optimization for reach-avoid control of linear but non-stochastic models
with bounded disturbances [FQMN+22]. Furthermore, so-called funnel libraries are used
by [MT17] for robust feedback motion planning under set-bounded disturbances.

Data-driven approaches | Models with (partly) unknown dynamics can be used to
express epistemic uncertainty about the underlying system. Verification of such models
based on data has been done using Bayesian inference [HHA17], optimization [KBJT19;
VIT22], and Gaussian process regression [JLFL20; BLDT+21]. Moreover, [KCOB21],
and [COB21] use neural networks for feedback motion planning of nonlinear determ-

138 7 DTSSs With Uncertain Parameters

inistic systems with probabilistic safety and reachability guarantees. Data-driven
abstractions have been developed for linear [CPM23], monotone [MGF21], event-
triggered [PM23], and also nonlinear systems [GLMA+24]. By contrast to our setting,
these approaches consider models with non-stochastic dynamics. A few recent exceptions
exist [SZ23; LSFZ23]; however, these approaches require more strict assumptions (e.g.,
discrete input sets) than our model-based approach.

7.6 Discussion
We conclude this chapter by discussing the benefits, limitations, and open challenges of
our robust IMDP abstraction approach.

Generality of our approach | We stress that the RDTSS in Def. 7.1 can capture
many common sources of uncertainty. As we have shown, our approach simultaneously
deals with set-bounded uncertainty in one or multiple parameters, as well as stochastic
uncertainty due to process noise of an unknown distribution. For example, the additive
term @: enables us to generate abstractions that faithfully capture any error term
represented by a bounded set (as we have done for the multi-room temperature control
problem). This idea could be used to deal with nonlinear systems, such as non-holonomic
robots [TBF05]. Concretely, wemay apply our abstraction method on a linearized version
of the systemwhile treating linearization errors as nondeterministic disturbances @: ∈ Q
in Eq. (7.1). The main challenge is then to compute this set-bounded representation Q
of the linearization error, either exactly or as a tight overapproximation.

Scalability | Enforcing robustness against set-bounded parameter uncertainty
hampers the scalability of our approach, especially compared to the setting in Chapter 6
(which only considers stochastic noise). For example, the approach presented in
Chapter 6 scaled to systems with a 6D state, whereas we could not scale the approach
presented in this chapter beyond 3D systems.2 The main reason is that our sampling-
based approach for computing probability intervals leads to very wide and conservative
intervals, which increases the number of transitions in the IMDP significantly. Thus, an
interesting direction for future research is to develop an abstraction method that leads
to tighter sets of transition probabilities. One idea (which is in line with the discussion
from Sect. 6.8) is to generate convex polytopic uncertainty sets (rather than intervals)
and formalize the resulting abstraction as an robust Markov decision process (RMDP)
(rather than an IMDP).

Safe learning | Finally, our abstraction-based approach could potentially be integ-
rated into a safe learning framework [BGHY+22; GF15]. In such a setting, our approach
may synthesize policies that guarantee safe interactions with the system, while tech-
niques from, for example, reinforcement learning [BTSK17; ZG21] or stochastic system
identification [TP19] can reduce the uncertainty sets (for the uncertain parameters)
based on state observations.

2We omitted this experiment from this thesis and instead refer to our paper [6] for details on this
automated anesthesia delivery benchmark.

7

7.6 Discussion 139

Summary

î We have presented a novel abstraction-based policy synthesis method for
discrete-time dynamical models with both stochastic and set-bounded para-
meter uncertainty.

î Our approach reasons probabilistically over stochastic noise while reasoning
robustly over parameter uncertainty.

î Capturing parameter uncertainty yields more robust Markov policies.
î However, capturing parameter uncertainty also leads to significantly larger

abstractions, thus currently limiting the practical scalability to (at most)
3D-state systems.

141

Part III

Parametric Markov Decision
Processes

8

143

8 Foundations of Parametric MDPs

Summary | Parametric Markov decision processes (pMDPs) extend standard MDPs
with transition probabilities described by polynomials over parameters. Thus, pMDPs
encode both uncertainty and dependencies between transition probabilities. By sub-
stituting each parameter with a concrete value, a pMDP reduces to a standard MDP
which we can analyze using the methods from Chapter 3. In this background chapter,
we introduce pMDPs and describe how to analyze them. We highlight challenges related
to pMDPs and discuss how we aim to address them in this thesis.

Origins | This chapter does not contain novel content and instead presents a brief
introduction to pMDPs. For a comprehensive treatment of pMDPs, we refer to [Jun20].

Background | The reader is assumed to be familiar with standard MDPs (Chapter 3).

8.1 Introduction
In Chapter 3, we have introduced robust Markov decision processes (RMDPs) as exten-
sions of Markov decision processes (MDPs) with sets of transition probabilities. We
have heavily used interval Markov decision processes (IMDPs) in Chapters 6 and 7,
which are a special case of RMDP, as models for finite-state abstractions of discrete-time
stochastic systems (DTSSs). However, to make analyzing RMDPs and IMDPs tractable,
we assumed that the actual choice of transition probabilities in the uncertainty sets
is made independently for all states and actions (called the rectangularity assumption;
see Remark 3.26). This assumption is often unrealistic and leads to too pessimistic
verification results.

Dependencies between transition probabilities | As an example, consider a simple
motion planning scenario where an unmanned aerial vehicle (UAV) is tasked to transport
a certain payload to a target location. External factors such as the wind direction
may affect the dynamics of the UAV. The assumption that such weather conditions
are independent between the different states of the UAV is unrealistic and may yield
pessimistic verification results. Similarly, in the verification of network protocols, we
typically do not precisely know the channel quality (i.e., the loss rate). However, the
loss rate is independent of whether we are either probing or actually sending useful
data over the network. A typical verification task would be to show that the protocol
yields a sufficiently high quality of service. Assuming that the channel quality depends
on the protocol state may be too pessimistic to establish that the protocol provides the
required quality of service.

144 8 Foundations of Parametric MDPs

Outline | In this chapter, we introduce parametric Markov decision processes (pM-
DPs), which add dependencies (or couplings) between the probabilities of different
transitions [LMT07; HHZ11a; Daw04; JJK22]. We first introduce the formal definition of
a pMDP in Sect. 8.2. Then, we discuss in Sect. 8.3 how to analyze pMDPs. Finally, we
list challenges related to pMDPs in Sect. 8.4 and discuss how we aim to address these
challenges in Part III of this thesis.

8.2 Parametric MDPs
Formally, let+ be a set of parameters. We denote the set of polynomials over parameters
+ with rational coefficients by Q[+] . A parametric Markov decision process (pMDP)
extends a standard MDP with a set of parameters and a parametric transition function.
The transition probabilities of a pMDP are not expressed as values in [0, 1], but as
polynomial functions over the parameters.1

Definition 8.1 (pMDP) Aparametric
MDP

parametric Markov decision process (pMDP) is a tuple
M+ B ((,�2C, B� ,+ , %, !, A) where (is a finite set of states,�2C is a finite set of actions,
B� ∈ (is an initial state, + is an (ordered) set of parameters, % : (×�2C × (⇀ Q[+]
is a parametric transition probability function, ! : (→ 2�% is a labeling function, and
A : (→ R≥0 is a state reward function.

Because pMDPs are direct extensions of MDPs, the concepts of paths, schedulers, etc.
carry over directly, for which we use the same notation as in Chapter 3.

Remark 8.2 Notice that the (parametric) transition function in Def. 8.1 differs
slightly from the definition for standardMDPs (apart from incorporating parameters).
Specifically, we defined the transition function of an MDP as % : (×�2C ⇀ Distr((),
i.e., as a mapping to distributions over states. By contrast, the transition function of
a pMDP maps every state-action-state triple to a function over the parameters. Thus,
our definition of a pMDP does not yet encode that the transition function must
express valid distributions; instead, we will take care of this later in this section.

We define a parametric Markov chain (pMC) as a pMDP with exactly one action in
every state.2 Analogous to discrete-time Markov chain (DTMC), we omit the actions of
a pMC at all from the definition.

Definition 8.3 (pMC) Aparametric
Markov
chain

parametric Markov chain (pMC) is a tuple D+ B
((, B� ,+ , %, !, A) where (is a finite set of states, B� ∈ (is an initial state, + is an
(ordered) set of parameters, % : (× (⇀ Q[+] is a parametric transition probability
function, ! : (→ 2�% is a labeling function, and A : (→ R≥0 is a state reward function.

If the labeling function ! and/or reward function A are irrelevant, we may omit them
from the pMDP or pMC tuple. We mainly tailor definitions and notation to pMDPs.
However, being a special case of a pMDP, all concepts naturally also apply to pMCs.

1As is common (see, for example, [Jun20]) we exclude non-rational probabilities for technical reasons.
2For consistency, we should call pMC a parametric DTMC (pDTMC). However, the term pMC is more

common in the literature and is thus preferred here.

8

8.2 Parametric MDPs 145

B0 B1 B2 B3

B4 B5

B6

B7

1 − E

E

0.1 · (1 − E3)

EE3 − 0.9 · (1 − E3)

E21 − 0.5 · E2

1 − E

0.5 · E2 1 − E2

1

1

1

Figure 8.1: A simple pMC with a singleton parameter set + = {E}.

Example 8.4 Fig. 8.1 shows a simple pMC with a singleton parameter set + = {E}.
The initial state is B0 and we consider state B3 as a target set. The transitions in the
pMC are annotatedwith polynomial functions over the parameter E . For example, the
transition from B0 to B4 is annotatedwith the polynomial % (B0, B4) = 1−0.5·E2 ∈ Q[+].

8.2.1 Parameter instantiation
Given a pMDP, we can substitute each parameter E ∈ + by a concrete value. We call
such an assignment of a value to each of the parameters a parameter instantiation.

Formally, a parameter instantiation is a function D : + → Q that maps parameters to
concrete values. Because we assumed the parameters + = {E1, . . . , E=}, = ∈ N>0 to be
ordered, parameter

instanti-
ation

we overload notation and often write an instantiation as the vector D ∈ Q |+ | ,
which is defined as [D (E1), . . . , D (E+)]> ∈ Q |+ | .

Applying the instantiation D to a polynomial 6 ∈ Q[+] yields 6[D] ∈ Q, which
is obtained by substituting every parameter E ∈ + in 6 with D (E). Thus, for every
B, B′ ∈ (and 0 ∈ �2C (B) of a pMDP, we can write % (B, 0, B′) [D] to denote substituting
the parameters + in the transition function % of a pMDP with the concrete values
D (E1), . . . , D (E=) given by the instantiation. With slight abuse of notation, we use the
more convenient notation % [D] (B, 0, B′) B % (B, 0, B′) [D], such that % [D] denotes the
(parameter-free) transition function obtained by applying D to the polynomial % (B, 0, B′)
for every transition (B, 0, B′).

Well-defined instantiations | In general, not all parameter instantiations lead to a
valid MDP. For example, in the pMC in Fig. 8.1, assigning a value of 1.5 to the parameter
E yields probabilities outside of [0, 1], thus violating the definition of the transition
function of a Markov chain. To exclude such invalid parameter valuations, we define a
subset of instantiations that we call the parameter space. The parameter space is precisely
the subset of instantiations that lead to valid MDPs.

Definition 8.5 (Parameter space) The parameter
space

parameter spaceVM+
for a pMDPM+ =

((,�2C, B� ,+ , %) is a subset of all instantiations D : + → Q defined as

VM+
=

{
D : + → Q : % [D] (B, 0, ·) ∈ Distr(() ∀B ∈ (, 0 ∈ �2C (B)

}
.

146 8 Foundations of Parametric MDPs

For any pMDPM+ , we only consider instantiations D ∈ VM+
that belong to the

parameter spaceVM+
.

Example 8.6 In the pMC in Fig. 8.1, all values E ∈ [0, 1] result in a DTMCwith valid
transition probabilities. Thus, the parameter spaceVM+

for this pMC is defined as
the set of instantiations that map E to the interval [0, 1], i.e.,

VM+
=

{
D : + → Q : D (E) ∈ [0, 1]

}
.

Induced MDP | Applying a parameter instantiation (from the parameter space) to a
pMDP yields an induced MDP, whose transition function is obtained by substituting the
parameters with their concrete values. For example, we can assign a value of 0.5 to the
parameter E in the pMC in Fig. 8.1. Because this instantiation is in the parameter space
VD+

of the pMC, applying this instantiation results in a valid DTMC.
Formally, applying the instantiation D ∈ VM+

to pMDP M+ = ((,�2C, B� ,+ , %)
induces the MDPM+ [D] B ((,�2C, B� , % [D]), where the transition function is defined
as % [D] (B, 0, B′) B % (B, 0, B′) [D] for all B, B′ ∈ (and 0 ∈ �2C (B). Similarly, applying
an instantiation D ∈ VD+

to a pMC D+ = ((, B� ,+ , %) induces the DTMC D+ [D] B
((, B� , % [D]), where the transition function is defined analogously. For the induced MDP
or DTMC, we can perform any of the verification tasks discussed in Chapter 3, such
as computing reachability probabilities, computing cumulative expected rewards, and
model checking probabilistic computation tree logic (PCTL) formulae.

8.3 Verifying Parametric MDPs
We now discuss how to analyze pMDPs. We first discuss the role of the parameters in
analyzing a pMDP. Thereafter, we describe common verification problems for pMDPs.

8.3.1 Solution function
Consider the problem of computing the probability of reaching the state B3 in the pMC
in Fig. 8.1. This reachability probability depends on the values of parameter E . Thus, the
result of the verification query can naturally be expressed as a function of the parameter
instantiation. This function is formalized by thesolution

function
solution function.

Definition 8.7 (Solution function for fixed scheduler) Consider a pMDP
M+ = ((,�2C, B� ,+ , %, !) with parameter spaceVM+

and a scheduler f ∈ SM+

Markov.
The solution function solM+

i,f : VM+
→ [0, 1] for the satisfaction probability of a

PCTL path formulae i on the pMDP C+ with scheduler f is defined as

solM+
i,f : D ↦→ PrM+ [D]

f (B� |= i) .

Solution functions for other measures, such as cumulative expected rewards, are
defined analogously. However, we omit an explicit definition for brevity.

8

8.3 Verifying Parametric MDPs 147

0 0
.25

0
.5

0
.75

10

0.02

0.04

0.06

0.08

0.1

D (E)
Pr

D
+
(♦
B 3
)

Figure 8.2: Solution function for the probability of reaching B3 of the pMC in Fig. 8.1.

Example 8.8 For the pMC in Fig. 8.1, consider the PCTL path formula i = ♦ {B3},
i.e., eventually reach state B3. The solution function solD+

i : VD+
→ [0, 1] for this

formula is a polynomial function over the value of parameter E :

solD+
i (D) = (1 − D (E)) · 0.1 · (1 − D (E)3) · (1 − D (E))

+ D (E) · 0.5D (E)2 · (1 − D (E)2)
= (1 − D (E))2 · 0.1 · (1 − D (E)3) + 0.5D (E)3 · (1 − D (E)2) .

This solution function is plotted in Fig. 8.2.

One may wonder why we write the solution function in Example 8.8 using D (E) and
not directly as a function of E . However, E is a (symbolic) parameter rather than a
variable, and thus, writing the solution function as a function of E would be incorrect.
For mathematical correctness, we thus insist on the more formal definition and define
the solution function as a function of the instantiation D. Then, the actual value of the
parameter E is written as D (E), just as we did in Example 8.8.

Maximizing and minimizing schedulers | The solution function in Def. 8.7 is
defined for the satisfaction probability on the DTMC obtained by applying a fixed
scheduler to the pMDP.We can also define solution functions for the (Markov) schedulers
that maximize or minimize a given measure.

Definition 8.9 (Maximizing/minimizing solution function) Consider a
pMDP M+ = ((,�2C, B� ,+ , %, !) with parameter space VM+

. The maximizing
solution function solM+

i,max : VM+
→ [0, 1] for the satisfaction probability of a PCTL

path formulae i on the pMDP C+ is defined as

solM+
i,max : D ↦→ max

f∈SM+
Markov

PrM+ [D]
f (B� |= i).

Similarly, the minimizing solution function solM+

i,min : VM+
→ [0, 1] is defined as

solM+

i,min : D ↦→ min
f∈SM+

Markov

PrM+ [D]
f (B� |= i).

148 8 Foundations of Parametric MDPs

Again, maximizing and minimizing solution functions for other measures, such as
cumulative expected rewards, can be defined analogously.

Maximizing (or minimizing) the solution function implicitly assumes that a different
maximizing (or minimizing) scheduler can be chosen for every instantiation D ∈ VM+

.
The maximizing (minimizing) solution function in Def. 8.9 can alternatively be obtained
by first computing solM+

i,f for every scheduler f ∈ SM+

Markov, and then taking the maximum
(minimum) over these functions for all instantiations D ∈ VM+

.

Properties of solution functions | We describe some key properties of solution
functions for pMDPs and pMCs. The exposition here is informal, and we refer to the
relevant literature for further details.
1. For the measures in this thesis, the solution function for an pMDP is continuous

over the subset of graph-preserving3 parameter instantiations [Jun20, Lemma 5.16];
2. For acyclic pMDPs, the solution function for an pMDP is continuous over the entire

parameter spaceVM+
[Jun20, Corollary 5.19];

3. Solution functions for pMCs are rational functions over the subset of graph-
preserving instantiations, and over the entire parameter space if the pMC is acyc-
lic [HBK17; BHHJ+20];

4. The size of the solution function is exponential in the number of parameters [HBK17;
BHHJ+20].

These properties indicate that, while solution functions are continuous functions over
the (graph-preserving) parameter instantiations, they are computationally expensive to
compute when the number of parameters is large.

8.3.2 Parameter synthesis
The so-calledparameter

synthesis
parameter synthesis problem for pMDPs considers computing parameter

values such that the induced MDP satisfies a logical specification (for example in PCTL,
see Def. 3.14). Several variants of this problem exist. For example, given a pMC and a
specification i , typical parameter synthesis queries include [JJK22]:
1. Do all parameter instantiations in (a subset of) the parameter space satisfy i?
2. Which parameter instantiations satisfy i and which ones do not?
3. What parameter instantiation maximizes the probability of satisfying i?

Variants of these queries for pMDPs additionally reason over (typically the minimizing
or maximizing) schedulers.

Example 8.10 Consider again the solution function shown in Fig. 8.2. We ask
the question: “For which parameter instantiations is this solution function at most
0.08?” This question is an instance of the second parameter synthesis problem above.
Answering this question leads to the partition of the parameter space shown in
Fig. 8.3. The parameter instantiations that satisfy this threshold of 0.08 are colored
green, and the ones that do not are colored red.

3A set of instantiations* ⊆ VM+
is graph-preserving if all D,D′ ∈ * lead to MDPsM[D] andM[D′]

with the same underlying graph (i.e., transitions cannot vanish under some instantiations).

8

8.4 Challenges 149

0 0
.25

0
.5

0
.75

10

0.02

0.04

0.06

0.08

0.1

D (E)
Pr

D
+
(♦
B 3
)

Figure 8.3: Partition of the parameter spaceVD+
into a satisfying (green) and unsatisfy-

ing (red) region for the reachability PCTL state formula Φ = P≤0.13(♦B3) for
the pMC in Fig. 8.1.

Solving parameter synthesis problems is intrinsically challenging because parameters
may appear in multiple parts of the model and can take uncountably many values. Exact
solutions to parameter synthesis problems typically reason over the solution function
directly [Daw04; HHZ11b; GHS18; BHHJ+20]. However, the size of the solution function
is exponential in the number of parameters, and thus, exact methods are typically limited
to a couple of parameters only. The problem of whether there exists a value in the
parameter space that satisfies a reachability specification is ETR-complete,4 and finding
a satisfying parameter value is exponential in the number of parameters [WJPK19].

Approximating methods for parameter synthesis have also been proposed, for ex-
ample, utilizing convex optimization [CJJK+17; CJJK+18] and sampling-based meth-
ods [CHHK+13; MMAG14]. Another technique is the parameter lifting algorithm (PLA)
developed by [QDJJ+16], which drops any dependencies between parameters and re-
places the parametric probabilities with nondeterministic choices. As such, PLA turns
a pMC into an MDP, leading to upper and lower bounds on solutions to parameter
synthesis problems. By iteratively partitioning the parameter space into regions that
(conservatively) satisfy or violate the specification, PLA can provide an approximate
solution to parameter synthesis problems [DJJC+15; JÁHJ+24]. However, due to the
partitioning of the parameter space, such approaches still scale poorly with the number
of parameters: Most benchmarks reported in [JÁHJ+24] contain one or two parameters
only, and the only exception with more (namely eight) parameters only has 52 states
and 133 transitions.

8.4 Challenges
The following two chapters of this thesis focus on two challenges related to pMDPs.

Chapter 9: Scaling to more parameters via distributions over parameters | As
we discussed above, analyzing pMDPs is intrinsically challenging and is typically limited
to a couple of parameters only. In Chapter 9, we aim to overcome this challenge by

4The ETR satisfiability problem is to decide if there exists a satisfying assignment to the real variables in
a Boolean combination of a set of polynomial inequalities. It is known that NP ⊆ ETR ⊆ PSPACE.

150 8 Foundations of Parametric MDPs

jointly considering two research questions related to MDPs:
1. How can we scale the verification of pMDPs to higher numbers of parameters?
2. How can we incorporate prior knowledge about the parameter values of a pMDP?

We address these questions by considering a variation of the pMDP verification problem.
Specifically, we consider a setting where the parameters of a pMDP are distributed
according to a (possibly unknown) probability distribution. This distribution encodes
prior knowledge about the parameter values. We only assume sampling access to the
distribution, but we do not require the distribution to be known explicitly. As our main
contribution, we present a method that, given a set of samples for the parameter values,
provides statistical guarantees on the probability of satisfying a given PCTL specification.
We show that our method scales to pMDPs with (in the order of) a thousand parameters,
which is way beyond the limit for exact methods.

Chapter 10: Using pMCs for more efficient model learning | In Chapter 10,
we ask the question: “How can we leverage knowledge about the parametric structure
of a model to make data-driven methods for analyzing this model more efficient?” To
answer this question, we consider the problem of learning a pMC from data. We
represent the learned model as a Markov chain whose transition probabilities are both
parametric and set-valued. Parametric probabilities allow modeling dependencies, and
sets of probabilities reflect uncertainty due to limited data. As our main contribution,
we develop novel and efficient methods for performing sensitivity analysis of such
parametric robust Markov chains (prMCs). More specifically, we measure sensitivity
in terms of partial derivatives of the solution function with respect to the underlying
parameters. We show that such a sensitivity analysis can improve the data efficiency of
learning algorithms.

Summary

î Parametric Markov decision processes (pMDPs) extend standard MDPs with
transition probabilities described by polynomials over parameters.

î A parameter instantiation substitutes each parameter with a concrete value,
yielding an induced MDP.

î Solution functions can be used to analyze measures on pMDPs; however,
their size is exponential in the number of parameters.

9

151

9 The Scenario Approach for Parametric
MDPs

Summary | We consider parametric Markov decision processes (pMDPs) with an
unknown probability distribution over the parameter instantiations. This setting essen-
tially defines a distribution over (parameter-free) MDPs. The problem is to compute the
probability that an MDP drawn according to this distribution satisfies a given temporal
logic specification. Solving this problem precisely is infeasible. In this chapter, we
propose a sampling-based method based on the scenario approach to compute a solution
to this problem with statistical guarantees. Specifically, based on a finite number of
samples of the parameters, our method yields high-confidence bounds on the probab-
ility of satisfying the specification. The number of samples required to obtain a high
confidence on these bounds is independent of the number of states and the number of
random parameters. Our experiments show that several thousand samples suffice to
obtain tight and high-confidence bounds on the satisfaction probability.

Origins | This chapter is based on the following journal article:
[2] Badings, Cubuktepe, Jansen, Junges, Katoen and Topcu (2022) ‘Scenario-Based

Verification of Uncertain Parametric MDPs’. STTT.
Some experiments presented in [2] are left out of this thesis for brevity.

Background | The reader is assumed to be familiar with pMDPs and their analysis,
as discussed in Chapter 8.

9.1 Introduction
In Chapter 8, we introduced parametric Markov decision processes (pMDPs) as versions
of Markov decision processes (MDPs) where the transition probabilities are described
by polynomial functions over parameters. While pMDPs allow modeling uncertainty
and dependencies between transition probabilities, they do not encode prior knowledge
about the values of the parameters. For example, pMDPs cannot model that certain
values for the parameters are more likely than others.

We want to analyze a pMDP while considering such additional information about the
typical (that is, the most likely) parameter values. Similar to [SBHH17], we, therefore,
assume that the parameters are random variables. For instance, consider our recurring
example of flying an unmanned aerial vehicle (UAV) in windy conditions. Thewind speed
is uncertain, but from historical weather data, we may derive a probability distribution
over wind speeds [PK08]. Thus, modeling parameters as random variables allows for
encoding prior knowledge about the values of the parameters.

152 9 The Scenario Approach for Parametric MDPs

9.2 Motivating Example

B0 B1 B2 B3

B4 B5

B6

B7

1 − E

E

0.1 · (1 − E3)

EE3 − 0.9 · (1 − E3)

E21 − 0.5 · E2

1 − E

0.5 · E2 1 − E2

1

1

1
To illustrate our problem setting more
concretely, consider again the parametric
Markov chain (pMC) D+ with a single
parameter + = {E} shown in Fig. 8.1
(copied here for convenience). Recall that
the parameter spaceVD+

for this pMC is
the set of all instantiationsD : + → Q such
that D (E) ∈ [0, 1]. We again consider the
solution function solM+

i,max for the maximal
satisfaction probability of the probabilistic
computation tree logic (PCTL) path formula i = ♦ {B3} (i.e., eventually reaching state B3).
However, we now also consider a probability measure P over the parameter spaceVD+

,
which encodes prior knowledge about the value of parameter E . We do not assume that
P is known explicitly, but we do assume that we can sample from the distribution (or
that we have access to a set of independent and identically distributed (i.i.d.) samples).
In this example, we consider the Gaussian distribution over the parameter space shown
in Fig. 9.1 (truncated at 0 and 1 to avoid invalid instantiations).

Verification problem | Since every parameter instantiation D maps (deterministic-
ally) to a solution solM+

i,max(D), we can now ask the question: “If we draw a parameter
instantiation D from the parameter spaceVD+

according to P, what is the probability that
the solution solM+

i,max(D) is below a certain threshold of, let’s say, 0.08?” This is precisely
the type of verification problem that we aim to solve in this chapter. However, solving
this problem means integrating the solution function with respect to the probability
measure P, which causes two problems. First, as discussed in Chapter 8, the solution
function is often prohibitively large, such that even representing the solution function is
infeasible. Second, we assumed that the probability measure P is not known explicitly,
so even if we can represent the solution function, we cannot integrate over it analytically.
Thus, solving this verification problem exactly is infeasible.

An approximate solution | By contrast, obtaining an approximate answer to the
verification problem above is relatively straightforward. Let us assume that the truncated
Gaussian distribution in Fig. 9.1 has a mean of 0.5 and a standard deviation of 0.2. While
we assumed we do not know this distribution explicitly, we can obtain i.i.d. samples
instead. Thus, we can compute an approximate answer to the verification problem
by sampling many instantiations D1, . . . , D# from VD+

according to P. For example,
for # = 1000 samples and a threshold of 0.08, we obtain that the probability of a
solM+

i,max(D) below this threshold is approximately 0.708. However, this answer is only an
approximation, and repeating the analysis with another set of samples yields a different
result of 0.675.

Statistical guarantees | We argue that such an approximate answer is often undesir-
able, especially for applications in safety-critical settings. Instead, we aim to provide
statistical guarantees on the approximation quality. For example, we want to say that the
probability for an instantiation D ∈ VD+

such that solM+
i,max(D) is below the threshold is

9

9.3 Problem Statement 153

0 0
.25

0
.5

0
.75

10

0.02

0.04

0.06

0.08

0.1

D (E)

Pr
D

+
(♦
B 3
)

Distribution P

Figure 9.1: Distribution with probability measure P over the parameter instantiations of
the pMC in Fig. 8.1.

at least (or at most) G ∈ [0, 1], and that claim holds with at least a confidence probability
of ~ ∈ [0, 1]. Intuitively, such a statistical guarantee accounts for the fact that we used a
finite number of samples to obtain the result. The larger the set of samples used, the
more confident we can be in the result. However, no matter how large the set of samples,
we can always have bad luck and obtain an incorrect result. In the following section, we
will make this intuition more precise.

9.3 Problem Statement
More formally, we consider that we are given a pMDPM+ = ((,�2C, B� ,+ , %) and a
probability measure P : B(VM+

) → [0, 1] over the parameter spaceVM+
.1 We call the

resulting model an uncertain parametric MDP (upMDP).

Definition 9.1 (upMDP) An uncertain
parametric
MDP

uncertain parametric MDP (upMDP) is a tuple
(M+ , P), whereM+ = ((,�2C, B� ,+ , %) is a pMDP and P is a probability distribution
over the parameter spaceVM+

ofM+ .

IfM+ is a pMC, then we call the tuple (M+ , P) an uncertain parametric MC (upMC).

Remark 9.2 (Probability measure P) The probability measure P used through-
out this chapter should not be confused with the probabilistic operator in PCTL
(see Def. 3.14). In this chapter, P always denotes a probability measure over the
parameter space of a pMDP.

Intuitively, a upMDP is a pMDP with an associated distribution over the parameter
space. Sampling from the parameter spaceVM+

according to P yields concrete MDPs
M+ [D] with instantiations D ∈ VM+

(and P(D) > 0).

Assumptions | Let us first make one key assumption about the distribution P over
the parameter instantiations. This assumption states that, although it is possible to draw
1Recall from Sect. 2.3 that B(-) is the Borel f-algebra over a set - . However, we will gloss over details

about measurability in this chapter for brevity.

154 9 The Scenario Approach for Parametric MDPs

the same instantiation twice, the probability for this to happen is zero. For example,
while it is possible to sample the exact same value twice from a Gaussian distribution,
the probability for this to happen is zero.

Assumption 9.3 (Parameter distribution) Let D,D′ ∈ VM+
be i.i.d. samples

extracted according to P. The probability that solM+
i,max(D) = solM+

i,max(D′) is zero.

Assumption 9.3 is needed for the theoretical results of the scenario approach to hold,
which is the key technique we use to solve the problem in this chapter.

Problem | Let us formalize the problem that we aim to solve. Suppose we are given a
upMDP (M+ , P) and a solution function solM+

i,max. We aim to compute the probability
of sampling a parameter instantiation D ∈ VM+

, such that the solution solM+
i,max(D) is

below a given threshold _ ∈ [0, 1]. We call this probability the satisfaction probability:

Definition 9.4 (Satisfaction probability) Let (M+ , P) be a upMDP, solM+
i,max be

a solution function, and _ ∈ [0, 1] be a threshold for the solution. Thesatisfaction
probability

satisfaction
probability of solM+

i,max with respect to the upper bound _ is

P
{
D ∈ VM+

: solM+
i,max(D) ≤ _

}
.

Remark 9.5 (PCTL specification) Imposing a threshold _ on a (real-valued)
reachability measure defines a specification whose interpretation is Boolean, ana-
logous to the PCTL formulae introduced for MDPs in Chapter 3.

We will compute a lower bound on the satisfaction probability based on a finite
set of i.i.d. samples from the parameter space VM+

. Mathematically, this set of
samples, denoted byU# = {D1, . . . , D# }, is an element of the product probability space
(V#
M+

,B(V#
M+
), P#), where V#

M+
=
>#

8=1VM+
is the # -times Cartesian product of

the parameter space, B(V#
M+
) is its Borel f-algebra, and P# is the product probability

measure. We aim to construct an algorithm that, for at least a V ∈ (0, 1) probability of P# ,
returns a valid lower bound on the satisfaction probability. In other words, for at least a
V ∈ (0, 1) probability of the setsU# we could sample from (V#

M+
,B(V#

M+
), P#), we

obtain a lower bound [∈ [0, 1] on the satisfaction probability that is correct. Formally,
this probably approximately correct (PAC) [HW93] lower bound on the satisfaction
probability is defined as follows.

Problem 9.6 (Lower bound satisfaction probability) Let (M+ , P) be a upMDP,
solM+

i,max be a solution function, _ ∈ [0, 1] be a threshold for the solution, and
V ∈ (0, 1) be a confidence probability. Compute a lower bound [on the satisfaction
probability such that

P#
{
{D1, . . . , D# } ∈ V#

M+
: P

{
D ∈ VM+

: solM+
i,max(D) ≤ _

}
≥ [

}
≥ V.

Typically, we want a lower bound [on the satisfaction probability that is correct with

9

9.4 Bounding the Satisfaction Probability 155

high probability, which we can achieve by choosing V close to one.

Example 9.7 Let us reconsider Fig. 9.1, which shows the solution function for the
pMC ((, B� ,+ , %, !) from Fig. 8.1 with an (unknown) Gaussian distribution P over
the parameter space. Consider again a threshold of _ = 0.08 on the satisfaction
probability. For this upMC (D+ , P), Problem 9.6 asks to compute a lower bound [
on the probability that the solution solM+

i,max(D) for a random D ∈ VM+
is below the

threshold of _ = 0.08. We compute this lower bound [based on a finite set of #
sampled parameter instantiations, and we aim to provide a confidence guarantee of
at least V . That is, only for less than a 1 − V fraction of such sets of instantiations,
our solution is allowed to be incorrect.

Variations | For brevity, this chapter focuses on the particular solution function
solM+

i,max. However, our approach can directly be applied to any other solution function,
such as with measures for minimizing schedulers (solM+

i,min) or cumulative expected
rewards. Similarly, while Problem 9.6 considers an upper bound _ on the solution, we
can easily consider lower bounds as well. We also discuss these variations in [2].

9.4 Bounding the Satisfaction Probability
In this section, we present a first step toward solving Problem 9.6. As we shall see, the
approach in this section does not quite solve Problem 9.6, because we cannot control
the threshold _ on the solution. Instead, the value of _ is determined by the solution to
a convex optimization problem, which in turn depends on the parameter instantiation
samples at hand. We will see a more appropriate solution to Problem 9.6 in Sect. 9.5.

9.4.1 Chance-constrained problem
First of all, let us recast the computation of the satisfaction probability as a chance-
constrained optimization problem. Intuitively, we want to find the smallest value for _,
such that the probability of the solution being below this threshold is at least [. Such
a pair of (_, [) can be found by solving the following chance-

constrained
optimization
problem

chance-constrained optimization
problem, denoted by CCP:

CCP : minimize
_≥0

_ (9.1a)

subject to P
{
D ∈ VM+

: solM+
i,max(D) ≤ _

}
≥ [. (9.1b)

Observe that this optimization problem has a single decision variable, _ ≥ 0. The
constraint in Eq. (9.1b) is commonly called a chance constraint.

Let _★ be an optimal solution to problem CCP for a fixed value of [. The satisfaction
probability of the solution function solM+

i,max is at least _★ with probability at least [, i.e.,

P
{
D ∈ VM+

: solM+
i,max(D) ≤ _★

}
≥ [.

Solving Eq. (9.1b) is very challenging in general, even if the probability measure P is
known. The main challenge is that the chance constraint allows us to neglect a 1 − [
portion of the probability mass under P, but there are many ways in which we can do

156 9 The Scenario Approach for Parametric MDPs

so. For example, for the Gaussian distribution in Fig. 9.1, we could try removing a 1 − [
probability from the tails of the distribution. However, it is quite common that such a
choice for removing probability mass leads to sub-optimal solutions, especially if the
uncertainty domain is high-dimensional [LB02].

9.4.2 Scenario problem
Instead of trying to solve the chance-constrained problem CCP in Eq. (9.1), we propose
a reformulation of the problem as a so-calledscenario

optimization
problem

scenario optimization problem [CG18a].
Intuitively, the idea is to replace the chance constraint in Eq. (9.1b) by the realization
of this constraint for only # ∈ N>0 samples D ∈ VM+

for the parameter instantiation.
Recall that we denote this set of samples by U# = {D1, . . . , D# }. Thus, we obtain the
following optimization problem.

SP# : minimize
_≥0

_ (9.2a)

subject to solM+
i,max(D8) ≤ _ ∀8 = 1, . . . , # . (9.2b)

While solving the chance-constrained problem CCP is intractable, the scenario optimiza-
tion problem SP# is a simple linear program that can be solved readily with any standard
convex optimization solver. The main question is, however, what guarantees a solution
to problem SP# provides on the probability that yet another parameter instantiation
D ∈ VM+

satisfies the constraints.
Let us denote an optimal point of SP# by _★

#
. Observe that the value of _★

#
is a random

variable whose value is determined by the samplesU# . In fact, due to the structure of
SP# , this optimal point can be computed analytically as the maximum of the solutions
for all sampled instantiations D ∈ U# , i.e.,

_★# = max
8=1,...,#

solM+
i,max(D8) .

Because _★
#

depends on the set of samples at hand, we can certainly not expect to obtain
a perfect lower bound [on the satisfaction probability by solving SP# . Instead, the
theory of thescenario

approach
scenario approach provides us with a statistical guarantee on the quality

of the lower bound [in combination with the value of _★
#
. For this theory to hold, we

require the optimum to problem SP# to exist and be unique, which is automatically
satisfied due to Assumption 9.3.

Proposition 9.8 For every # ∈ N>0, the optimal point to problem SP# exists and
is unique.

Then, the scenario approach provides us with the following important result.

Theorem 9.9 ([CG08, Theorem 2.4]) Let _★
#

be an optimal point to problem SP# .
Then, it holds that

P#
{
P
{
D ∈ VM+

: solM+
i,max(D) > _★#

}
≥ Y

}
= (1 − Y)# . (9.3)

9

9.4 Bounding the Satisfaction Probability 157

Proof. [CG08, Theorem 2.4] states that under certain assumptions (which we discuss
below), it holds that

P#
{
P
{
D ∈ VM+

: solM+
i,max(D) > _★#

}
≥ Y

}
=

3−1∑
8=0

(
#

8

)
Y8 (1 − Y)#−8 ,

where 3 ∈ N is the number of decision variables of the optimization problem. Since
3 = 1 for problem SP# , we simplify the expression to Eq. (9.3). Next, the assumptions
for this expression to hold are:
1. The optimal point to problem SP# exists and is unique,
2. The scenario problem belongs to the class of fully supported optimization problems

(see [CG08] for a formal definition).
Assumption (1) is satisfied due to Proposition 9.8. For our particular problem at hand,
Assumption (2) boils down to requiring that, with probability 1, none of the constraints
in problem SP# are exactly the same, which is satisfied due to Assumption 9.3. This
concludes the proof. �

Intuitively, Theorem 9.9 can be explained as follows. Let _★
#

be the optimal point to
SP# for a given set of samplesU# . This optimal point _★

#
is a random variable whose

distribution is determined by P# . For at least a (1 − Y)# probability mass of the values
_★
#

we can obtain, we have that the probability for solM+
i,max(D) > _★# is at most Y, where

D ∈ VM+
is sampled according to P.

We slightly rewrite Theorem 9.9 to be more consistent with Problem 9.6.

Corollary 9.10 (Satisfaction prob. with sample-dependent threshold) Let
_★
#

be an optimal point to problem SP# , and let V ∈ (0, 1) be a confidence probability.
Then, it holds that

P#
{
P
{
D ∈ VM+

: solM+
i,max(D) ≤ _★#

}
≥ (1 − V)1/#

}
= V. (9.4)

Proof. Observe that P{D ∈ VM+
: solM+

i,max(D) > _★
#
} + P{D ∈ VM+

: solM+
i,max(D) ≤

_★
#
} = 1. Thus, rewriting Eq. (9.3) yields

P#
{
P
{
D ∈ VM+

: solM+
i,max(D) > _★#

}
≥ Y

}
= P#

{
1 − P

{
D ∈ VM+

: solM+
i,max(D) ≤ _★#

}
≥ Y

}
= P#

{
−P

{
D ∈ VM+

: solM+
i,max(D) ≤ _★#

}
≥ Y − 1

}
= P#

{
P
{
D ∈ VM+

: solM+
i,max(D) ≤ _★#

}
≤ 1 − Y

}
= (1 − Y)#

Flipping the sign of the outer inequality gives

P#
{
P
{
D ∈ VM+

: solM+
i,max(D) ≤ _★#

}
≥ 1 − Y

}
= 1 − (1 − Y)#

158 9 The Scenario Approach for Parametric MDPs

Let V = 1 − (1 − Y)# , which implies Y = 1 − (1 − V)1/# . Thus,

P#
{
P
{
D ∈ VM+

: solM+
i,max(D) ≤ _★#

}
≥ (1 − V)1/#

}
= V,

which concludes the proof. �

Corollary 9.10 does not solve Problem 9.6 | It is tempting to conclude that Corol-
lary 9.10 solves Problem 9.6. However, the subtle yet key difference is that in Problem 9.6,
the threshold _ is fixed, while in Corollary 9.10, _★

#
is a random variable, whose value

depends on the sample setU# at hand. Thus, we cannot choose _★
#

ourselves; instead, its
value is determined by the sampling mechanism. We illustrate this important difference
with the following example.

Example 9.11 We continue our motivating example, where we considered a pMC
with the satisfaction probability for reaching state B3 with probability at most _ =

0.08. Thus, Problem 9.6 asks for a lower bound [∈ [0, 1] such that

P#
{
{D1, . . . , D# } ∈ V#

M+
: P

{
D ∈ VM+

: solM+
i,max(D) ≤ 0.08

}
≥ [

}
≥ V.

Now consider solving this problem using Corollary 9.10 with # = 10 parameter
instantiation samples. Thus, we obtain that

P#
{
P
{
D ∈ VM+

: solM+
i,max(D) ≤ _★#

}
≥ (1 − V)1/#

}
= P#

{
P
{
D ∈ VM+

: solM+
i,max(D) ≤ max

D∈U#

solM+
i,max(D)

}
≥ (1 − V)1/#

}
= V.

In other words, with probability of at least (1 − V)1/# , the # th solution is below the
highest solution among all sampled instantiations D ∈ U# , and that claim holds

0 0
.25

0
.5

0
.75

10

0.02

0.04

0.06

0.08

0.1

D (E)

Pr
D

+
(♦
B 3
)

Distribution P

0 0
.25

0
.5

0
.75

10

0.02

0.04

0.06

0.08

0.1

D (E)

Pr
D

+
(♦
B 3
)

Distribution P

Figure 9.2: Two sets of # = 10 parameter instantiations U# = {D1, . . . , D10} (shown
as red crosses) and the corresponding solutions solM+

i,max(D) (shown as red
points). The optimal point _★

#
differs for these sets of samples.

9

9.5 Improving Bounds by Discarding Samples 159

for at least a V ∈ (0, 1) probability among all sample setsU# ∈ V#
M+

. Two sets of
= 10 together with their corresponding values of _★

#
are shown in Fig. 9.2. With

the result from Corollary 9.10, we cannot control the value _★
#

ourselves, which
means that we cannot solve Problem 9.6 because it requires fixing _ upfront.

9.4.3 Sample complexity
Corollary 9.10 reveals an intricate relationship between the number of samples # , the
confidence V , and the lower bound satisfaction probability [= (1 − V)1/# . Given that
V is close to one, we can thus obtain a high confidence in the lower bound [on the
satisfaction probability. This high confidence is easily achieved for a sufficiently large
number of samples # , as seen from the following corollary.

Corollary 9.12 (Required sample size) The sample size # necessary to obtain
a desired lower bound [∈ (0, 1) on the satisfaction probability with at least a
confidence of V ∈ (0, 1) is

=

⌈
log(1 − V)

log[

⌉
,

where dGe denotes the ceil function, i.e., the function which rounds its argument
G ∈ R upwards to the nearest integer.

Corollary 9.12 states that the sample size# is logarithmic in the confidence probability
V . Thus, a significant improvement in V (i.e., closer to one) only requires a marginal
increase in # . Similarly, increasing the sample size # improves the lower bound on the
satisfaction probability [. For example, applying Corollary 9.10 with # = 10 samples
yields that the satisfaction probability is lower bounded by 0.794 (with a confidence of at
least V = 0.9) and by 0.631 (with a confidence of at least V = 0.99). When increasing the
number of samples to # = 100, we obtain improved lower bounds of 0.977 (for V = 0.9)
and 0.955 (for V = 0.99).

Next, consider the extreme case of V infinitely close to one. Observe from Corol-
lary 9.12 that such a confidence probability can only be obtained for # = ∞. Intuitively,
this observation makes sense: We can only be absolutely certain of our lower bound on
the satisfaction probability if we have based this estimate on infinitely many samples.
In practice, our sample set is finite, and a typical confidence probability is V = 1 − 10−3.

9.5 Improving Bounds by Discarding Samples
We return to a setting with a fixed threshold _ on the value of the solution function, as
we used to formulate Problem 9.6. We again formulate a scenario optimization problem
similar to Eq. (9.2). However, instead of enforcing the constraint solM+

i,max(D) ≤ _ for all
samples D ∈ U# , we only enforce this constraint for a subset of samples. In other words,
we discard a portion of the samples, which allows us to obtain a less conservative lower
bound on the satisfaction probability [CG11]. In what follows, we first formulate the
scenario optimization problem and thereafter discuss how we solve Problem 9.6 based
on the scenario approach theory.

160 9 The Scenario Approach for Parametric MDPs

9.5.1 Scenario problem with discarded samples
Again, we will use a set of # i.i.d. samples from the parameter space VM+

. In this
section, we make the additional assumption that these samples are sorted in ascending
order. We denote the resulting set of samples byU↑

#
to indicate that the samples are in

ascending order.

Assumption 9.13 (Solutions in ascending order) The set of samples U↑
#

=

{D1, . . . , D# } is sorted in ascending order, i.e., D1 ≤ D2 ≤ . . . ≤ D# .

In practice, after obtaining the # i.i.d. samples from the parameter space, we sort
them in ascending order. Sorting the samples will be beneficial for notational purposes
but does not affect the theoretical aspects of our approach.

For a fixed value of : < # and the set of samplesU↑
#

(in ascending order), consider
the following optimization problem, denoted by SP#,: :

SP#,: : minimize
_≥0

_ (9.5a)

subject to solM+
i,max(D8) ≤ _ ∀8 = 1, . . . , # − :. (9.5b)

We denote the optimal solution to problem SP#,: by _★
#,:

. Observe that problem SP#,:

is a relaxation of problem SP# in Eq. (9.2), where the constraints for : samples with the
highest solutions are discarded. Because the samples are sorted, the optimal point to
problem SP#,: is obtained analytically as

_★
#,:

= max
8=1,...,#−:

solM+
i,max(D8) .

The following result from [CG11] forms the basis of how we solve Problem 9.6 based on
the solution to the scenario problem SP#,: with : discarded constraints.

Theorem 9.14 ([CG11, Theorem 2.1]) Fix : < # , let _★
#,:

be an optimal point to
problem SP#,: , and let V be a confidence probability. Then, it holds that

P#
{
P
{
D ∈ VM+

: solM+
i,max(D) > _★#

}
> Y

}
≤ V. (9.6)

where Y is such that

V =

:∑
8=0

(
#

8

)
(Y)8 (1 − Y)#−8 .

Proof. [CG11, Theorem 2.1] states that under certain assumptions (which we discuss
below), it holds that

P#
{
P
{
D ∈ VM+

: solM+
i,max(D) > _★#

}
> Y

}
≤

(
: + 3 − 1

:

) :+3−1∑
8=0

(
#

8

)
Y8 (1 − Y)#−8 ,

where 3 ∈ N is the number of decision variables of the optimization problem. Plugging
in 3 = 1, we obtain the expression in Eq. (9.6). Next, the main assumption (in addition

9

9.5 Improving Bounds by Discarding Samples 161

to those in the proof of Theorem 9.9) for this expression to hold is that all : discarded
samples are violated by the optimal point _★

#,:
, i.e.,

solM+
i,max(D8) > _★#,:

∀8 = # − : + 1, . . . , # .

Observe that the solutions solM+
i,max(D8) for : = 1, . . . , # − : still left in problem SP#,:

are, with probability 1, strictly smaller than the discarded solutions solM+
i,max(D8) for

: = # − : + 1, . . . , # . Thus, this assumption is satisfied by construction, which
concludes the proof. �

Theorem 9.14 asserts that, for any fixed : = 0, . . . , # − 1, with a probability of at
most

∑:
8=0

(
#
8

)
Y8 (1 − Y)#−8 , the probability that solM+

i,max(D) > _★#,:
for the next sampled

instantiation D ∈ VM+
is at least Y. We emphasize that the value of : in Theorem 9.14

is chosen a priori, i.e., before observing the sampled parameter instantiations. Thus, it
would not be correct to choose : based on the values of the solutions for the samples at
hand. Instead, we must fix : independent of these solutions.

9.5.2 Problem 9.6 solved
We discuss how we can leverage Theorem 9.14 to solve Problem 9.6. For this, we need
to modify the theorem such that we can choose the number of samples to discard a
posteriori, i.e., after observing the sampled parameter instantiations. The trick is that
we apply Theorem 9.14 not for a single value of : , but for all values of : = 0, . . . , # − 1
simultaneously. Accordingly, we must also modify the overall confidence probability to
acknowledge that we apply the theorem for # different values of : . Formally, we obtain
the following result.

Corollary 9.15 (Satisfaction prob. with fixed threshold) Let _ ∈ [0, 1] be a de-
sired threshold and let V̂ ∈ (0, 1) be a confidence probability. For the set of samples
U↑

#
= {D1, . . . , D# } sorted in ascending order, let" ≤ # be the number of samples

fromU↑
#

that violate this threshold:

" B
���{D ∈ U↑# : solM+

i,max(D) > _}
��� .

Then, it holds that

P#
{
P

{
D ∈ VM+

: solM+
i,max(D) ≤ _

}
≥ 1 − Y"

}
≥ V̂, (9.7)

where Y# = 1 (all # samples are violated), and otherwise (if 0 ≤ " < #), Y" is the
solution of

1 − V̂
#

=

"∑
8=0

(
#

8

)
(Y")8 (1 − Y")#−8 . (9.8)

162 9 The Scenario Approach for Parametric MDPs

Proof. Observe that P{D ∈ VM+
: solM+

i,max(D) > _★
#,:
} + P{D ∈ VM+

: solM+
i,max(D) ≤

_★
#,:
} = 1. Fix V =

1−V̂
#

in Eq. (9.6). Then, we have for all : = 0, . . . , # − 1 that

P#
{
P
{
D ∈ VM+

: solM+
i,max(D) > _★#,:

}
> Y:

}
≤ 1 − V̂

#

P#
{
1 − P

{
D ∈ VM+

: solM+
i,max(D) ≤ _★#,:

}
> Y:

}
≤ 1 − V̂

#

P#
{
−P

{
D ∈ VM+

: solM+
i,max(D) ≤ _★#,:

}
> Y: − 1

}
≤ 1 − V̂

#

P#
{
P
{
D ∈ VM+

: solM+
i,max(D) ≤ _★#,:

}
< 1 − Y:

}
≤ 1 − V̂

#

P#
{
P
{
D ∈ VM+

: solM+
i,max(D) ≤ _★#,:

}
≥ 1 − Y:

}
≥ 1 − 1 − V̂

#
,

where each Y: , : = 0, . . . , # − 1 is such that Eq. (9.8) holds. Via Boole’s inequality (i.e.,
the union bound), we obtain

P#

{
#−1⋂
8=0

[
P
{
D ∈ VM+

: solM+
i,max(D) ≤ _★#,:

}
≥ 1 − Y:

]}
≥ 1 − # (1 − V̂)

#
= V̂,

In other words, with probability at least V̂ ∈ (0, 1), the lower bounds on the satisfaction
probability with respect to _★

#,:
for all : = 0, . . . , # − 1 hold simultaneously.

Now consider solving Problem 9.6 for a desired threshold of _, i.e., we want to
compute a lower bound on the probability that

P
{
D ∈ VM+

: solM+
i,max(D) ≤ _

}
.

We distinguish two cases for the number of samples" violating the threshold _:
1. If " = # , then all samples violate the threshold _, and we invoke the trivial

solution of Y" = 1, which is true by definition;
2. If 0 ≤ " < # , then we have that _★

#,"
≤ _, so we obtain

P#
{
P
{
D ∈ VM+

: solM+
i,max(D) ≤ _

}
≥ 1 − Y"

}
≥ V̂,

where Y" is such that Eq. (9.8) holds.
These cases cover the cases from the corollary, so we conclude the proof. �

Observe that Corollary 9.15 provides (with a confidence probability of at least V̂) a
lower bound on the satisfaction probability with respect to a fixed threshold _. Hence,
we can use Corollary 9.15 to solve Problem 9.6.

Beta distribution | We note that Eq. (9.8) is the cumulative distribution function of a
beta distribution, which can easily be solved numerically for Y, " = 0, . . . , # − 1; see,
e.g., [CG18a] for details. Moreover, we can speed up the computations at run-time by
tabulating the solutions to Eq. (9.8) for all relevant values of # , V , and" up front.

9

9.6 Experimental Evaluation 163

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Number of violating samples (")

Lo
w
er

bo
un

d
([
) V = 0.9

V = 0.99
V = 0.999

(a) # = 10 samples.
0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Number of violating samples (")

Lo
w
er

bo
un

d
([
) V = 0.9

V = 0.99
V = 0.999

(b) # = 100 samples.

Figure 9.3: Lower bounds on the satisfaction probability obtained from Corollary 9.10
(shown as points at" = 0) and Corollary 9.15 for" = 0, . . . , # (lines).

Tightness of lower bounds | Fig. 9.3 illustrates how the number of violating samples,
" , influences the quality of the lower bound Y" on the satisfaction probability. The
points at" = 0 are the bounds returned by Corollary 9.10, while the lines correspond
to Corollary 9.15. Intuitively, the lower bound on the satisfaction probability computed
by Corollary 9.15 decreases with an increased number of violating samples. Moreover,
Corollary 9.10 yields a better lower bound than Corollary 9.15 (points versus the lines
in Fig. 9.3), at the cost of not using a fixed threshold on the solution function, and not
being able to deal with violating samples.

In Fig. 9.4, we fix the fraction of violating samples "/# and plot the lower bounds
on the satisfaction probability obtained using Corollary 9.15 for different values of #
and V . Note that the lower bounds grow toward the fraction of violation for increased
sample sizes. As also shown with Corollary 9.12, the confidence probability V only has
a marginal effect on the obtained lower bounds.

Finally, we make the following remark with respect to the sample complexity of
Corollaries 9.10 and 9.15.

Remark 9.16 (Independence to model size) The number of samples needed to
obtain a certain confidence probability in Corollaries 9.10 and 9.15 is independent
of the number of states, transitions, or parameters of the upMDP. Despite this
independence, note that the time to compute solutions via model checking still
depends on the number of states and transitions of the instantiated MDP.

9.6 Experimental Evaluation
We implemented our approach in Python using the model checker Storm [DJKV17]
to construct and analyze samples of MDPs. To demonstrate the effectiveness of our
approach, we perform experiments on a variety of benchmarks with different numbers
of states and parameters. We use our results to compute PAC lower bounds on the
satisfaction probabilities of several specifications.2

2Recall from Remark 9.5 that a specification combines a measure of, e.g., reachability, with a threshold _
on this measure.

164 9 The Scenario Approach for Parametric MDPs

0 200

400

600

800

1,000

0

0.2

0.4

0.6

0.8

1

Number of samples (#)

Lo
w
er

bo
un

d
([
)

V = 0.9
V = 0.99
V = 0.999

(a) Fraction of violating samples "/# = 10%.
0 200

400

600

800

1,000

0

0.2

0.4

0.6

0.8

1

Number of samples (#)

Lo
w
er

bo
un

d
([
) V = 0.9

V = 0.99
V = 0.999

(b) Fraction of violating samples "/# = 50%.

Figure 9.4: Lower bounds on the satisfaction probability obtained from Corollary 9.15
for fixed fractions "/# of violated samples.

Reproducibility | Our implementation is available at https://doi.org/10.5281/
zenodo.6674059. All of our experiments ran on a computer with 32 3.7 GHz cores and
64 GB of RAM.

Overview of experiments | First, we apply our method to a dedicated UAV motion
planning benchmark. Thereafter, we report on a set of well-known benchmarks used in
parameter synthesis [JÁHJ+24]. These benchmarks are, for instance, available on the
website of the tool PARAM [HHZ11b] or part of the PRISM benchmark suite [KNP12].
In this chapter, we focus on computing a lower bound [on the satisfaction probability
for a fixed confidence probability V . In [2], we show that we can also do the opposite,
i.e., specify a lower bound [and compute the corresponding confidence probability V .

9.6.1 UAV Motion Planning
We apply our method to a UAV motion planning problem. This benchmark originates
from [CJJK+20] and the later journal version [2] on which this chapter is based.

Model | Consider the UAV shown in Fig. 9.5 that needs to transport a payload from
one end of a valley to the green target region, while avoiding the red obstacles. We
model the dynamics of the UAV as an MDP, whose state space represents a discretized
version of the valley. The states encode the position of the UAV, the current weather
conditions (sunny, stormy), and the general wind direction in the valley. The actions
model the possible movements of the UAV between the cells of the grid, and the outcome
of each action is stochastic due to the influences of the environment. We thus obtain
a grid world model in which the UAV can decide to fly in either of the six cardinal
directions (N, W, S, E, up, down). Upon executing an action, the wind moves the UAV
one cell in the wind direction with a probability ? , which depends on the wind speed.
Furthermore, we assume that the weather and wind conditions change during the day
and are described by a stochastic process.

Distribution over weather conditions | The transition probabilities of the MDP
are not fixed but rather a function of the weather. Thus, the model is an upMDP whose
transition probabilities depend on the weather. Concretely, parameters describe how the

https://doi.org/10.5281/zenodo.6674059
https://doi.org/10.5281/zenodo.6674059

9

9.6 Experimental Evaluation 165

1
3
5
7
9
11
13
15

1 3 5 7 9 11 13 15

1
3
5
7
9
11
13
15

G

~

I

Figure 9.5: The UAV benchmark with obstacles (red boxes) and a target area (green box).
The three trajectories are for a uniform wind distribution (solid line), stronger
northbound wind (dashed line), and stronger westbound wind (dotted line).

weather affects the UAV in different zones of the valley, and how the weather/wind may
change during the day. In total, the model has 900 parameters. From historical weather
data, we can derive a distribution over these parameters. Specifically, we consider the
following three cases for the weather conditions:
1. a uniform distribution over the different weather conditions in each zone;
2. the probability for a weather condition inducing a wind direction that pushes the

UAV northbound (i.e., into the positive ~-direction) is twice as likely as in other
directions;

3. it is twice as likely to push the UAV westbound (i.e., into the negative G-direction).

We consider the solution function solM+
i,max(D) : D ↦→ PrM+ [D]

f (B� |= ♦)), i.e., the probabil-
ity of reaching the target set) ⊂ ((while avoiding the obstacles, which are modeled as
sink states). We consider a lower bound on this solution function of _ = 0.9. Intuitively,
solM+

i,max(D) ≥ 0.9 for a parameter instantiation D ∈ VM+
means that reachability prob-

ability is at least 90%. Thus, the satisfaction probability P{D ∈ VM+
: solM+

i,max(D) ≥ 0.9}
is the probability of drawing a parameter instantiation D ∈ VM+

, such that the result-
ing MDP has a reachability probability of at least 90%. Hence, Problem 5.2 asks, with
probability at least V , for a lower bound [on the satisfaction probability P{D ∈ VM+

:
solM+

i,max(D) ≥ 0.9}. i.e., the probability that a parameter instantiation D ∈ VM+
sampled

according to the distribution P leads to a solution of at least 0.9.

Satisfaction vs. unsatisfaction | Recall that we can also compute a lower bound
on the probability of not satisfying the specification. To do so, we consider _ as a lower
bound (instead of an upper bound) on the solution function. Thus, the unsatisfaction
probability for this benchmark is P{D ∈ VM+

: solM+
i,max(D) < 0.9}. To compute this

166 9 The Scenario Approach for Parametric MDPs

Table 9.1: Lower bounds [on the (un)satisfaction probability for the UAV benchmark
with # = 5 000 samples.

V = 0.9 V = 0.99 V = 0.999 V = 0.9999

Weather condition [, sat [, unsat [, sat [, unsat [, sat [, unsat [, sat [, unsat
1. Uniform wind 0.91138 0.05830 0.90928 0.05670 0.90735 0.05528 0.90555 0.05398
2. Northbound wind 0.77878 0.17483 0.77577 0.17217 0.77302 0.16978 0.77048 0.16760
3. Westbound wind 0.77680 0.17664 0.77378 0.17397 0.77103 0.17157 0.76847 0.16938

unsatisfaction probability, we basically substitute all maximizations with minimizations
and flip all inequalities throughout our approach. For details, we refer to our paper [2].

Trajectories | We depict example trajectories of the UAV under the optimal policies
for these three cases in Fig. 9.5. The trajectory depicted by the black line represents a
simulated trajectory for the first case (uniform distribution), taking a direct route to
reach the target area. Similarly, the trajectories shown by the dashed blue and dotted
purple lines are simulated trajectories for the second (stronger northbound wind, i.e.,
positive G-direction) and third cases (stronger westbound wind, i.e., positive ~-direction),
respectively. Under these two weather conditions, the UAV takes different paths toward
the goal to account for the stronger wind. In particular, in the case of westbound wind
(case 3), we observe that the UAV flies close to the obstacle at the right bottom. By
contrast, in the case of northbound wind (case 2), the wind may push the UAV into the
obstacles, so we observe that the UAV avoids getting close to the obstacles while flying
toward the target area.

Bounds on satisfaction probabilities | We sample # = 1 000 parameter values
for each case and consider different confidence probabilities V between 0.9 and 0.9999.
For all three weather conditions, we use Corollary 9.15 to compute the lower bounds
[on (a) the probability of satisfying the reachability specification defined above, and
(b) the probability of not satisfying the specification. Specifically, this lower bound [is
computed as the value of (1 − Y") in Corollary 9.15, where" is the number of samples
that violate the specification.

The results are presented in Table 9.1. The highest lower bound on the satisfaction
probability is obtained for the first weather condition, and is [= 0.911 (for V = 0.9)
and [= 0.906 (for V = 0.9999). In other words, under a uniform distribution over the
weather conditions, the UAV will (with a confidence of at least V = 0.9999) satisfy the
specification on at least 90.6% of the days. The second and third weather conditions lead
to lower bounds of [= 0.770 and [= 0.768 (for V = 0.9999), respectively, showing that
it is harder to navigate around the obstacles with non-uniform probability distributions
over the parameters. The average time to run our approach on this upMDP with 900
parameters and around 10 000 states (i.e., performing the sampling, model checking, and
computing the lower bounds [) with 5 000 parameter samples is 9.5 minutes.

9.6.2 Parameter Synthesis Benchmarks
Setup | In our second set of benchmarks, we adopt pMDPs and pMCs from [QDJJ+16].
We adapt the Consensus protocol [AH90] and the Bounded Retransmission Protocol
(Brp) [HSV93; DJJL01] to upMDPs; theCrowds Protocol (Crowds) [Shm04] and theNAND

9

9.6 Experimental Evaluation 167

Table 9.2: Information for the benchmark instances and the approximate (un)satisfaction
probabilities taken from [QDJJ+16].

Specification Model size Approximation

Benchmark Measure _ Pars. States Trans. Sat. prob. Unsat. prob.

Brp
(256,5) Pr(♦)) ≤0.5 2 19 720 26 627 0.055 0.898
(16,5) ExpRew(♦)) ≤3 4 1 304 1 731 0.275 0.676
(32,5) ExpRew(♦)) ≤3 4 2 600 3 459 0.232 0.718

Crowds (10,5) Pr(♦)) ≤0.9 2 104 512 246 082 0.537 0.413
(15,7) Pr(♦)) ≤0.9 2 8 364 409 25 108 729 0.411 0.539

Nand (10,5) Pr(♦)) ≥0.5 2 35 112 52 647 0.218 0.733
(25,5) Pr(♦)) ≥0.5 2 865 592 1 347 047 0.206 0.744

Consensus (2,2) Pr(♦()) ≥0.25 2 272 492 0.280 0.669
(4,2) Pr(♦()) ≥0.25 4 22 656 75 232 0.063 0.888

Multiplexing benchmark (Nand) [HJ02] become uMCs. Table 9.2 lists the specifications
checked and the number of parameters, states, and transitions for all benchmarks. For
most benchmarks, we consider reachability measures Pr(♦)), but for Brp (16,5) and
(32,5) we consider expected cumulative reward measures ExpRew(♦)). Depending on
the benchmark, we consider the threshold _ as an upper or lower bound on the measure
of interest. For all benchmarks, we assume a uniform distribution over the parameters.

Approximative baseline | Essentially, the parameter lifting algorithm (PLA)
from [QDJJ+16] allows approximating the size of the satisfying (or unsatisfying)
regions of the parameter space. Thus, PLA approximates the satisfaction probability for
a uniform distribution over the parameter space. We use PLA as a baseline to approxim-
ate the satisfaction probability (or the unsatisfaction probability) of the specifications,
for which the results are shown in Table 9.2. We provide these numbers as a baseline
only: the computation via PLA cannot scale to more than tens of parameters [QDJJ+16]
and cannot cope with unknown distributions.

Specifications with variable thresholds _ | For benchmark Brp (16,5), we demon-
strate how Corollary 9.10 can be used to compute a lower bound on the satisfaction
probability with respect to the expected reward measure ExpRew(♦)) and the variable
threshold _★

#
. More intuitively, this means we compute a lower bound on the probability

that the (# + 1)th solution is at most the maximum of the first # solutions, which is
_★
#
= max8=1,...,# solM+

i,max(D8). We fix a confidence probability of V = 0.99 and use either
= 1 000 or 10 000 parameter instantiation samples. The resulting lower bouns on the
satisfaction probability (which only depend on # and V) are [= 0.9954 (for # = 1 000)
and [= 0.9995 (for # = 10 000). However, the corresponding value of _★

#
is a random

variable that depends on the set of samples at hand. In the histogram in Fig. 9.6, we
plot the distribution over the values of _★

#
when we repeat this experiment many times.

Our results confirm that Corollary 9.10 can be used to lower bound the satisfaction
probability when the threshold on the specification does not need to be fixed.

Solving Problem 9.6 | We show how to solve Problem 9.6 for the considered bench-
marks. Recall that this problem assumes a fixed threshold _ ∈ [0, 1] on the solution

168 9 The Scenario Approach for Parametric MDPs

13 14 15 16 17 18
Threshold

0

200

400

600

Co
un

t

(a) # = 1 000 samples.

13 14 15 16 17 18
Threshold

(b) # = 10 000 samples.

Figure 9.6: Histograms of the obtained thresholds _★
#

on Brp (16,5).

function and a confidence probability V ∈ (0, 1), and asks to compute a lower bound [
on the satisfaction probability such that

P#
{
{D1, . . . , D# } ∈ V#

M+
: P

{
D ∈ VM+

: solM+
i,max(D) ≤ _

}
≥ [

}
≥ V.

We apply Corollary 9.15 to compute such a lower bound [for a fixed _ and V . Concretely,
the lower bound [is obtained as 1 − Y" in Corollary 9.15, where " is the number of
samples in U↑

#
= {D1, . . . , D# } that violate the threshold _. For each benchmark, we

sample # = 25 000 values for the parameters and apply Corollary 9.15 for increasing
confidence probabilities V . We use the values for _ reported in Table 9.2.

We report the resulting bounds [in Table 9.3. We observe that the obtained values of
[are slightly more conservative (i.e., lower) for higher values of V . This observation
is indeed intuitive: To reduce the 1 − V probability of obtaining an incorrect bound on
the (un)satisfaction probability, the value of [must be more conservative. Moreover,
increasing the confidence probability V only marginally reduces the obtained lower
bound [. For example, the obtained lower bound on the satisfaction probability for
Brp (256,5) with V = 0.9 is [= 0.07244, while for V = 0.9999, it is only reduced to
[= 0.07036 (a reduction of only 0.21%). This observation confirms the important result
of Corollary 9.12: A high confidence probability V can typically be obtained without
sacrificing the tightness of the obtained lower bound [.

Finally, we remark that the confidence probability V can often be improved signific-
antly by only marginally reducing the lower bound [. Consider, for example, the results
for Nand (10,5) in Table 9.3. For V = 0.99, we obtain a lower bound of 0.23783 on the
probability of satisfying the specification, while for a (significantly higher) confidence
of V = 0.9999, we obtain a lower bound of 0.23561. In other words, by weakening our
lower bound [by an almost negligible amount of 0.002, we increase the confidence in
the results from 99% to a remarkable 99.99%. This result highlights that a very high
confidence probability V can be achieved in practice, without hurting the lower bound
[significantly—an observation that has been made often in the scenario approach
literature [CG18a; CCG21].

9

9.7 Discussion 169

Table 9.3: Lower bounds [on the (un)satisfaction probability for # = 25 000 samples.
V = 0.9 V = 0.99 V = 0.999 V = 0.9999

Benchmark [, sat [, unsat [, sat [, unsat [, sat [, unsat [, sat [, unsat

Brp
(256,5) 0.07244 0.91221 0.07168 0.91135 0.07099 0.91056 0.07036 0.90982
(16,5) 0.28787 0.68619 0.28653 0.68481 0.28531 0.68353 0.28417 0.68234
(32,5) 0.24356 0.73176 0.24229 0.73044 0.24113 0.72922 0.24005 0.72808

Crowds (10,5) 0.55106 0.42091 0.54957 0.41945 0.54821 0.41810 0.54695 0.41685
(15,7) 0.42397 0.54798 0.42250 0.54650 0.42115 0.54514 0.41990 0.54387

Nand (10,5) 0.23909 0.73637 0.23783 0.73506 0.23668 0.73384 0.23561 0.73271
(25,5) 0.20979 0.76673 0.20858 0.76546 0.20748 0.76430 0.20647 0.76321

Consensus (2,2) 0.29383 0.68009 0.29248 0.67870 0.29125 0.67742 0.29010 0.67622
(4,2) 0.07367 0.91086 0.07291 0.91000 0.07221 0.90921 0.07157 0.90846

Computing V for a given [| Conversely, we can also compute the confidence prob-
ability that can be guaranteed for a fixed lower bound [on the satisfaction probability.
However, we omit these results from this thesis for brevity, and we instead refer the
interested reader to [2].

9.7 Discussion
We close this chapter with a brief discussion of related work.

Uncertainty in MDPs | MDPs with uncertain transition probabilities, such as the
RMDPs and IMDPs discussed in Chapter 3, have received a lot of attention in the artificial
intelligence and planning literature [PLSS13; GLD00; WTM12]. However, as already
discussed in Chapter 3, most tractable solutions assume that these uncertain transition
probabilities are independent across different states and actions of the MDP. Some
exceptions that relax this independence assumption exist; however, state-of-the-art
exact solution methods are limited to only a few hundred states [HPW18]. Multi-model
MDPs [SKD21] treat distributions over probability and cost parameters and aim at
finding a single strategy maximizing a weighted value function. This problem is NP-hard
for deterministic strategies and PSPACE-hard for history-dependent strategies.

Distributions over parameters | Considering distributions over parameters of pM-
DPs has been proposed a couple of times in the literature. The authors of [BHL19]
consider the analysis of Markov models in the presence of uncertain rewards, utilizing
statistical methods to reason about the probability of a pMDP satisfying an expected cost
specification. This approach is restricted to reward parameters and does not explicitly
compute confidence bounds. The work in [PWHA16] obtains data-driven bounds on
the parameter ranges and then uses parameter synthesis techniques to validate spe-
cifications for all parameter values in this range. Paper [LBBS+18] computes bounds
on the long-run probability of satisfying a specification with probabilistic uncertainty
for Markov chains. Other related techniques include multi-objective model checking to
maximize the average performance with probabilistic uncertainty sets [SBHH17], and
sampling-based methods which minimize the regret with uncertainty sets [AVLA+17].
Finally, the approach in [ABCK+18] considers a variant of the problem in this paper
where parameter values cannot be observed and thus must be learned. The latter pa-

170 9 The Scenario Approach for Parametric MDPs

per formulates the strategy synthesis problem as a computationally harder partially
observable Markov decision process (POMDP) synthesis problem and uses off-the-shelf
point-based POMDP methods [PGT03; CLZ97].

Observability of parameters | In this chapter, we considered a setting where policies
can depend on the values of the parameters. Thus, we made the implicit assumption that
the parameter values are observed before computing a policy. Whether this assumption
is appropriate depends on the context. Other authors have investigated the setting where
the parameter values cannot be observed, such that a single policy must be computed that
is robust against the distribution. This setting has recently been considered by [RAM23;
SAP24] for upMDPs, and also relates to so-called Bayes-adaptive (PO)MDPs which are
commonly used in reinforcement learning [CRLH23; RLH21; GSD12; ÇOK22]. A variant
where parameter values cannot be observed and thus must be learned has been studied
by [ABCK+18]. The setting with unobservable parameters requires a single policy for
all parameters and is, thus, arguably more challenging. In that setting, sampled data
from the solution function is not i.i.d., which is a requirement for our approach. On the
other hand, however, our approach scales significantly better than those that consider
unobservable parameters.

Variants for other models | While we focused on pMDPs in this chapter, similar
approaches have been proposed for continuous-time Markov chains (CTMCs) with a
distribution over the (parametric) transition rates. For example, the authors of [BS18]
use Bayesian reasoning to compute parameter values that satisfy a metric temporal logic
specification on a CTMC. CTMCs with a distribution over the transition rates is the
topic of Chapter 12 of this thesis. In that chapter, which is based on [3], we develop a
sampling-based method similar to the one proposed in this chapter for verifying CTMCs
with distributions over the transition rates.

Future research | An interesting direction for future work is to adapt our approach
for more involved models such as Markov automata [HH12]. Another potential line of
future work is to integrate our approach within a parameter synthesis framework for
parametric Markov models [JJK22].

Summary

î We studied parametric MDPs with a distribution over parameter instanti-
ations, which we call an uncertain parametric MDP (upMDP).

î The distribution of the parameter instantiations is unknown, and instead,
we only assumed access to a finite set of samples of the parameter.

î We have developed a sampling-based method based on the scenario ap-
proach to compute PAC-style lower bounds on the satisfaction probability
of a given temporal logic specification.

î In practice, several thousand samples suffice to obtain tight and high-
confidence verification results.

10

171

10 Sensitivity Analysis for Parametric
Markov Chains

Summary | We introduce parametric robust MCs (pRMCs) as the unification of
parametric and robust Markov chains. These models incorporate both parameters and
sets of probability distributions to alleviate the often unrealistic assumption that precise
probabilities are available. In this chapter, we present an efficient method to compute
partial derivatives of the solution function for a pRMC, with respect to its parameters.
These partial derivatives measure the sensitivity of the solution function to changes in
the parameters. Our method is based on linear programming and differentiating these
programs around a given value for the parameters. We show that our approach scales
to models with over a million states and thousands of parameters. Moreover, using
these partial derivatives to guide sampling in an iterative learning scheme improves the
sample efficiency over other sampling strategies.

Origins | This chapter is based on the following publication:
[4] Badings, Junges, Marandi, Topcu and Jansen ‘Efficient Sensitivity Analysis for Para-

metric Robust Markov Chains’. CAV.
In this paper, we (1) present the first algorithm to compute partial derivatives for pRMCs,
(2) develop an efficient method to determine a subset of parameters with the highest
derivatives, and (3) apply our methods in an iterative learning scheme.

Background | We assume familiarity with Markov chains and their parametric vari-
ant, which we discussed in Chapters 3 and 8, respectively. In particular, we prominently
use solution functions for parametric Markov chains (pMCs).

10.1 Introduction
Classical Markov chains assume that all probabilities are precisely known—an assump-
tion that is difficult, if not impossible, to satisfy in many applications [8]. In Sect. 3.3, we
have seen how robust MCs (RMCs) alleviate this assumption by using sets of probability
distributions, e.g., intervals of probabilities in the simplest case [JL91; BGN09]. A typical
verification problem for RMCs is to compute upper or lower bounds on measures of
interest, such as the expected cumulative reward, under worst-case realizations of these
probabilities in the set of distributions [WTM12; PLSS13]. Thus, these values are robust
against any selection of probabilities in these sets.

Where to improve my model? | As an example, consider a ground vehicle navigat-
ing toward a target location in an environment with different terrain types. On each
terrain type, there is some probability that the vehicle will slip and fail to move. Suppose

172 10 Sensitivity Analysis for Parametric Markov Chains

we obtain a sufficient number of samples to infer upper and lower bounds (i.e., intervals)
on the slipping probability on each terrain, which we use to model the environment as
an RMC. However, from the RMC, it is unclear how our model (and thus the measure
of interest) will change if we obtain more samples. For instance, if we take one more
sample for a particular terrain, some intervals of the RMC will change, but how can we
expect the verification result to change? And if the verification result is unsatisfactory,
for which terrain type should we obtain more samples?

Parametric robust MCs | To reason about how additional samples will change our
model and thus the verification result, we employ a sensitivity analysis [FTG16]. To that
end, we use parametric robust MCs (pRMCs), which are RMCs whose sets of probability
distributions are defined as a function of a set of parameters [Del15], e.g., intervals
with parametric upper/lower bounds. With these functions over the parameters, we
can describe dependencies between the model’s states. Applying an instantiation (i.e.,
assigning a value to each of the parameters; see Chapter 8) to a pRMC induces an
RMC by replacing each occurrence of the parameters with their assigned values. For
this induced RMC, we compute a (robust) value for a given measure, and we call this
verification result the solution for this instantiation. Analogous to parametric Markov
decision processes (pMDPs), we can associate a pRMC with a solution function that maps
parameter instantiations to solutions.

Differentation for pRMCs | For the ground vehicle example above, we choose the
parameters to represent the number of samples we have obtained for each terrain. Natur-
ally, the derivative of this solution function with respect to each parameter (a.k.a. sample
size) then corresponds to the expected change in the solution upon obtaining more
samples. Such differentiation for parametric Markov chains (pMCs), where parameter
instantiations yield one precise probability distribution, has been studied in [HSJM+22].
For pRMCs, however, it is unclear how to compute derivatives and under what conditions
the derivative exists. We thus consider the following problem:

Problem 1 (Compute all derivatives): Given a pRMC and a parameter instan-
tiation, compute the partial derivative of the solution function (evaluated at this
instantiation) with respect to each of the parameters.

Our approach | We compute derivatives for pRMCs by solving a parameterized
linear optimization problem. We build upon results from convex optimization theory
for differentiating the optimal solution of this optimization problem [BV14; Bar18]. We
also present sufficient conditions for the derivative to exist.

Improving efficiency | However, computing the derivative for every parameter
explicitly does not scale to more realistic models with thousands of parameters. Instead,
we observe that to determine for which parameter we should obtain more samples, we
do not need to know all partial derivatives explicitly. Instead, it may suffice to know
which parameters have the highest (or lowest, depending on the application) derivative.
Thus, we also solve the following (related) problem:

10

10.2 Overview 173

E1 E3

E2

E4

E5

(a) Grid world.

Derivatives
Par. True MLE #

m5̂

mE8

m5 +

m#8

E1 0.25 0.50 12 16.00 -2.74
E2 0.40 0.42 36 2.93 -0.02
E3 0.45 0.63 30 0.00 0.00
E4 0.50 0.53 60 22.96 -0.07
E5 0.35 0.41 22 8.59 -0.16

(b) MLEs and derivatives.

B1 B2

B3 B4

...
...

. . .

. . .

0.50

0.50

0.50 0.50

0.58

0.50

0.42
0.50

(c) Portion of the MC.

Figure 10.1: Grid world environment (a). The vehicle () must deliver the package ()
to the warehouse (). We obtain the maximum likelihood estimates (MLEs)
in (b), leading to the MC in (c).

Problem 2 (: highest derivatives): Given a pRMC with |+ | parameters, determine
the : < |+ | parameters with the highest (or lowest) partial derivative.

We develop novel and efficient methods for solving Problem 2. Concretely, we
design a linear program (LP) that finds the : parameters with the highest (or lowest)
partial derivative without computing all derivatives explicitly. This LP constitutes a
polynomial-time algorithm for Problem 2 and is, in practice, orders of magnitude faster
than computing all derivatives explicitly, especially if the number of parameters is
high. Moreover, if the concrete values for the partial derivatives are required, one can
additionally solve Problem 1 for only the resulting : parameters. In our experiments,
we show that we can compute derivatives for models with over a million states and
thousands of parameters.

Learning framework | Learning in stochastic environments is very data-intensive
in general, and millions of samples may be required to obtain sufficiently tight bounds
on measures of interest [Kak03; MBPJ23]. Several methods exist to obtain intervals
on probabilities based on sampling, including statistical methods such as Hoeffding’s
inequality [BLM13] and Bayesian methods that iteratively update intervals [SSPJ22].
Motivated by this challenge of reducing the sample complexity of learning algorithms,
we embed our methods in an iterative learning scheme that profits from having access
to sensitivity values for the parameters. In our experiments, we show that derivative
information can be used effectively to guide sampling when learning an unknown
Markov chain with hundreds of parameters.

Outline | We give an overview of our approach in Sect. 10.2 and formalize the problem
statement in Sect. 10.3. In Sect. 10.4, we solve Problems (1) and (2) for pMCs, and
in Sect. 10.5 for pRMCs. We present the embedding in a learning scheme and the
experiments in Sect. 10.6. Finally, we survey related work in Sect. 10.7, and we discuss
open challenges for further research in Sect. 10.8.

10.2 Overview
We expand the example from Sect. 10.1 to illustrate our approach more concretely. The
environment, shown in Fig. 10.1a, is partitioned into five regions of the same terrain

174 10 Sensitivity Analysis for Parametric Markov Chains

B1 B2

B3 B4

...
...

. . .

. . .

1 − E1

1 − E1

E1 E1

1 − E2

1 − E1

E2
E1

Figure 10.2: Parametric MC.

B1 B2

B3 B4

...
...

. . .

. . .

[1 − 6 (#1),
1 − 6 (#1)] [1 − 6 (#1), 1 − 6 (#1)]

[6 (#1), 6 (#1)] [6 (#1), 6 (#1)]

[1 − 6 (#2),
1 − 6 (#2)]

[1 − 6 (#1), 1 − 6 (#1)]

[6 (#2), 6 (#2)]
[6 (#1), 6 (#1)]

Figure 10.3: Parametric robust MC.

type. The vehicle can move in the four cardinal directions. Recall that the slipping
probabilities are the same for all states with the same terrain. The vehicle follows a
dedicated route to collect and deliver a package to a warehouse. Our goal is to estimate
the expected number of steps 5 ★ to complete the mission.

Estimating probabilities | Classically, we would derive maximum likelihood es-
timates (MLEs) of the probabilities by sampling. Consider that, using # samples per
slipping probability, we obtained the rough MLEs shown in Fig. 10.1b and thus the MC
in Fig. 10.1c. Verifying this Markov chain (MC) shows that the expected travel time
(called the solution) under these estimates is 5̂ = 25.51 steps, which is far from the travel
time of 5 ★ = 21.62 steps under the true slipping probabilities. We want to close this
verification-to-real gap by taking more samples for one of the terrain types. For which
of the five terrain types should we obtain more samples?

Parametric model | We can model the grid world as a parametric Markov chain
(pMC), with a solution function representing the travel time 5̂ for different parameter
instantiations. We sketch four states of this pMC in Fig. 10.2. The most relevant
parameter is then naturally defined as the parameter with the largest partial derivative
of the solution function. As shown in Fig. 10.1b, parameter E4 has the highest partial
derivative of m5̂

mE4
= 22.96, while the derivative of E3 is zero as no states related to this

parameter are ever visited.

Parametric robust model | The approach above does not account for the (level
of) uncertainty in each MLE. Terrain type E4 has the highest derivative but also the
largest sample size, so sampling E4 once more has likely less impact than for, e.g., E1.
So, is E4 actually the best choice to obtain additional samples for? The parametric
robust MC (pRMC) that allows us to answer this question is shown in Fig. 10.3, where
we use (parametric) intervals as uncertainty sets. The parameters are the sample sizes
#1, . . . , #5 for all terrain types (contrary to the pMC,where parameters represent slipping
probabilities). Now, if we obtain one additional sample for a particular terrain type, how
can we expect the uncertainty sets to change?

Derivatives for pRMCs | We use the pRMC to compute an upper bound 5 + on the
true solution 5 ★. Obtaining one more sample for terrain type E8 (i.e., increasing #8 by
one) shrinks the interval [6(#8), 6(#8)] on expectation, which in turn decreases our

10

10.3 Problem Statement 175

upper bound 5 +. Here, 6 and 6 are functions mapping sample sizes to interval bounds.

The partial derivatives m5 +

m#8
for the pRMC are also shown in Fig. 10.1b and give a very

different outcome than the derivatives for the pMC. In fact, sampling E1 yields the biggest
decrease in the upper bound 5 +, so we ultimately decide to sample for terrain type E1
instead of E4.

Efficient differentiation | We remark that we do not need to know all derivatives
explicitly to determine where to obtain samples. Instead, it suffices to know which
parameter has the highest (or lowest) derivative. In the rest of the paper, we develop
efficient methods for computing either all, or only the: ∈ N>0 highest, partial derivatives
of the solution functions for pMCs and pRMCs.

Supported extensions | Our approaches are applicable to general pMCs and pRMCs
whose parameters can be shared between distributions (and thus capture dependencies,
being a common advantage of parametric models in general [JÁHJ+24]). Besides para-
meters in transition probabilities, we can handle parametric initial states, rewards, and
policies. We could, e.g., use parameters to model the policy of a surveillance drone in
our example and compute derivatives for these parameters.

10.3 Problem Statement
Recap | Recall from Chapter 8 that a pMC is defined as D+ = ((, B� ,+ , %, A), where
+ = {E1, . . . , E |+ | }, is a finite and ordered set of parameters.1 The set of polynomials
over parameters + with rational coefficients is Q[+] . A parameter instantiation is a
function D : + → Q mapping parameters to real valuations. We again overload notation
and write D ∈ Q |+ | for an instantiation of all parameters in + , which is defined as
[D (E1), . . . , D (E+)]> ∈ R |+ | . Applying an instantiation D to a pMC yields an MC D+ [D]
by replacing each transition probability 5 ∈ Q[+] by 5 [D]. Finally, recall from Def. 8.5
that the parameter spaceVD+

is the subset of instantiations that lead to valid MCs (i.e.,
with valid probability distribution).

Remark 10.1 (Initial state distribution) In this chapter, we consider Markov
chains where the initial state B� ∈ Distr(() is defined as a distribution over states,
instead of a fixed element of ((as we do in most other chapters). However, this
difference is without loss of generality because we can always express an initial
state distribution by expanding the Markov chain. Similarly, we can always express
a fixed initial state B� ∈ (as a Dirac distribution over that state.

Expected rewards | In Chapter 8, we focused on solution functions for satisfaction
probabilities, such as reachability probabilities. In this chapter, we shift focus and
consider expected reward measures based on the state-reward function A : (→ R≥0 of a
pMC. The next assumption ensures that the expected cumulative reward is finite.

1We do not need the labeling function ! : (→ 2�% in this chapter, so we omit it from the definition.

176 10 Sensitivity Analysis for Parametric Markov Chains

Assumption 10.2 (Sink states) Let � ⊆ (be a set of absorbing (sink) states of
pMC D+ with zero reward, i.e., A (B′) = 0∀B′ ∈ �. From every state B ∈ (and for
every parameter instantiation D ∈ VD+

, the pMC reaches the set � with probability
one, i.e., PrD+ [D] (B |= ♦�) = 1.

We remark that Assumption 10.2 is quite standard in probabilistic model checking to
ensure finiteness of expected cumulative rewards [BK08].

Remark 10.3 (Discount factor) We may drop Assumption 10.2 by instead consid-
ering expected cumulative rewards with a discount factor W ∈ (0, 1). In this chapter,
we purely focus on the case without a discount factor for brevity. Nevertheless,
our methods can readily be adapted for the discounted case. For details on using
discount factors, we refer back to Remark 3.21.

Recall from Chapter 3 that ΠD+ [D] (B) is the set of paths starting in B ∈ (, that the
probability for a path c ∈ ΠD+ [D] (B) is denoted by PrD+ [D] (c), and that the (undiscoun-
ted) cumulative reward over the path c = B0B1 · · · is rew(c) = '(B0) +'(B1) + · · · . Using
the notation from Def. 3.20, the solution function solE : VD+

→ R≥0 for the expected
cumulative reward in pMC D+ is defined for all D ∈ VD+

as follows:

solE(D) =
∑
B∈(

(
B� (B) · ExpRewD+ [D] (B |= ♦�)

)
=

∑
B∈(

(
B� (B) ·

∑
c∈ΠD+ [D]fin (B,♦�)

PrD+ [D] (c) · rew(c)
)
,

(10.1)

where the second equality follows from the definition of the cumulative expected reward
in Def. 3.20 (as Assumption 10.2 implies that � ⊆ (is reached with probability one).
Recall from Sect. 3.2.2.2 that, as a result, the expected cumulative reward is finite and
characterized by a summation over finite paths c ∈ ΠD+ [D]

fin (B, ♦�) only.

Remark 10.4 (Notation of solution function) In Chapter 8, we used the nota-
tion solD+

i for the solution function of a probabilistic computation tree logic (PCTL)
formula i in a pMC D+ . In this chapter, we somewhat simplify notation and drop
the superscript for the model for brevity. Thus, the model for which the solution
function is defined is kept implicit.

10.3.1 Parametric robust Markov chains
In this section, we introduce parametric robust MCs (pRMCs) as an extension of robust
MCs (RMCs) with parametric uncertainty sets. As we define below, these uncertainty sets
are convex polytopes whose halfspace inequality constraints are defined by polynomials
over a finite set of parameters.

Convex polytopes | Recall from Chapter 2 that theconvex
polytope

convex polytope)�,1 ⊆ R= defined
by matrix � ∈ R<×= and vector 1 ∈ R< is the set)�,1 = {? ∈ R= : �? ≤ 1}. We denote

10

10.3 Problem Statement 177

by T= the set of all convex polytopes of dimension = ∈ N>0, i.e.,

T= =
{
)�,1 : � ∈ R<×=, 1 ∈ R<, < ∈ N>0

}
.

In this chapter, we consider an RMC as a tuple ((, B� ,P, A), where the uncertain transition
function P : (→ T |(| maps states to convex polytopes) ∈ T |(| . Compared to the RMC
definition from Sect. 3.3, we thus impose the additional assumption that the uncertainty
set for each state-action pair is a convex polytope.

Parametric polytopes | We extend RMCs with polytopes whose halfspaces are
defined by polynomials Q[+] over + . To this end, let T= [+] be the set of all such

parametric
polytope

parametric polytopes of dimension = ∈ N>0:

T= [+] =
{
)�,1 : � ∈ Q[+]<×=, 1 ∈ Q[+]<, < ∈ N>0

}
. (10.2)

An element) ∈ T= [+] can be interpreted as a function) : R |+ | → 2(R
=) that maps an

instantiation D to a (possibly empty) convex polytopic subset of R= . The set) [D] is
obtained by substituting each E8 in) by D (E8) for all 8 = 1, . . . , |+ |.

Example 10.5 The uncertainty set for state B1 of the pRMC in Fig. 10.3 is the
parametric polytope) ∈ T2 [+] with singleton parameter set + = {#1}, such that

) =
{
[?1,1, ?1,2]> ∈ R2 : 61(#1) ≤ ?1,1 ≤ 61(#1),

1 − 61(#1) ≤ ?1,2 ≤ 1 − 6
1
(#1), ?1,2 + ?1,2 = 1

}
.

We use parametric convex polytopes to define a parametric robust MC (pRMC) parametric
robust
Markov
chain

in the
following way:

Definition 10.6 (pRMC) A parametric robust MC (pRMC) is a tuple M+
'
B

((, B� ,+ ,P, A), where (is a finite set of states, B� ∈ Distr(() is an initial state (distri-
bution), + is an (ordered) set of parameters, A : (→ R≥0 is a state reward function,
and (different from RMCs) P : (→ T |(| [+] is a parametric and uncertain transition
function that maps states to parametric convex polytopes.

The scripts + and ' inM+
'

indicate that the pRMC is both parametric and robust.
Applying an instantiation D to a pRMC yields an RMCM+

'
[D] by replacing each

parametric polytope) ∈ T |(| [+] by) [D], which is a (nonparametric) polytope defined
by a concrete matrix � ∈ R<×= and vector 1 ∈ R< . Without loss of generality, we
consider that nature (see Def. 3.29) minimizes the expected cumulative reward until
reaching a set of terminal states () ⊆ (. Because we consider infinite-horizon rewards,
we restrict ourselves to stationary natures g ∈ TM

+
'
[D]

stat (as defined in Sect. 3.3).
The minimum expected cumulative reward solE,' (D), called the robust solution on the

instantiated pRMCM+
'
[D], is defined as

solE,' (D) =
∑
B∈(

(
B� (B) · min

g∈T
M+

'
[D]

stat

∑
c∈ΠD+ [D]fin (B,♦�)

Pr
M+

'
[D]

g (c) · rew(c)
)
, (10.3)

178 10 Sensitivity Analysis for Parametric Markov Chains

where the subscript ' expresses that the solution function is robust (i.e., computed for the
most pessimistic nature; see Sect. 3.3.4). We refer to the function solE,' : VM+

'
→ R>0

as therobust
solution
function

robust solution function (for the cumulative expected reward measure).

Assumption 10.7 (Graph-preservation of p(R)MCs) In this chapter, we con-
sider Assumption 10.2 for all pMCs and pRMCs. Furthermore, we assume that
transitions cannot vanish under any instantiation (graph-preservation). That is, for
every B, B′ ∈ (, we have that % (B) [D] (B′) (for pMCs) and P(B) [D] (B′) (for pRMCs) are
either zero or strictly positive for all instantiations D. Graph-preservation ensures
that solution functions are smooth for all pMCs and for most pRMCs (we discuss
the exceptions in Sect. 10.5.1).

10.3.2 Problem statement
Let 5 (@1, . . . , @=) ∈ R< be a differentiable multivariate function with< ∈ N>0. We de-
note thepartial

derivative
partial derivative of the function 5 with respect to its arguments @ = [@1, . . . , @=]

by mG
m@
∈ R< . The gradient of 5 combines all partial derivatives in a single vector as

∇@ 5 = [m5
m@1
, . . . ,

m5

m@=
] ∈ R<×= . We only use gradients ∇D 5 with respect to the parameter

instantiation D, so we simply write ∇5 in the remainder.
Thegradient gradient of the robust solution function evaluated at the instantiation D is

∇solE,' [D] =
[(msolE,'

mD (E1)
)
[D], . . . ,

(msolE,'
mD (E|+ |)

)
[D]

]
. We formalize the first problem that we

described in Sect. 10.1 as follows.

Problem 10.8 (Computing all |\ | derivatives) Given a pRMCM+
'

and a para-
meter instantiation D, compute the gradient ∇solE,' [D] of the robust solution func-
tion evaluated at D.

Solving Problem 10.8 is linear in the number of parameters, which leads to significant
overhead if the number of parameters is large. Typically, it suffices to obtain only the
parameters with the highest derivatives, leading to the second problem statement:

Problem 10.9 (Computing k < |\ | highest derivatives) Given a pRMC M+
'
,

an instantiation D, and a : < |+ |, compute a subset +★ of : parameters for which
the partial derivatives are maximal.

For both problems, we present polynomial-time algorithms for pMCs (Sect. 10.4) and
pRMCs (Sect. 10.5). Sect. 10.6 defines problem variations that we study empirically.

10.4 Differentiating Solution Functions for pMCs
Before solving Problems 10.8 and 10.9 for pRMCs, we first consider the simpler version
of these problems for pMCs.

We can compute the solution of an MC D+ [D] with instantiation D based on a
system of |(| linear equations; here for an expected reward measure [BK08]. Let G =

[GB1 , . . . , GB |(|]> and A = [AB1 , . . . , AB |(|]> be variables for the expected cumulative reward
and the instantaneous reward in each state B ∈ (, respectively. Then, for a set of terminal

10

10.4 Differentiating Solution Functions for pMCs 179

(sink) states () ⊂ (, we obtain the equation system

GB = 0, ∀B ∈ () (10.4a)
GB = AB + % (B) [D]G, ∀B ∈ (\() . (10.4b)

Let us set % (B) [D] = 0 for all B ∈ () and define the matrix % [D] ∈ R |(|× |(| by stacking the
rows % (B) [D] for all B ∈ (. Then, Eq. (10.4) is written in matrix form as (� |(| −% [D])G = A .
The equation system in Eq. (10.4) can be efficiently solved by, e.g., Gaussian elimination
or more advanced iterative equation solvers.

10.4.1 Computing derivatives explicitly
We differentiate the equation system in Eq. (10.4) with respect to an instantiation D (E8)
for parameter E8 ∈ + , similar to, e.g., [HSJM+22]. For all B ∈ () , the derivative mGB

mD (E8) is
trivially zero. For all B ∈ (\ () , we obtain via the product rule that

mGB

mD (E8)
=
m% (B)G
mD (E8)

[D] = (G★)> m% (B)
>

mD (E8)
[D] + % (B) [D] mG

mD (E8)
,

where G★ ∈ R |(| is the solution to Eq. (10.4). In matrix form for all B ∈ (, this yields(
� |(| − % [D]

) mG

mD (E8)
=
m%G★

mD (E8)
[D] . (10.5)

The solution defined in Eq. (10.1) is computed as solE [D] = B>
�
G★. Thus, the partial

derivative of the solution function with respect to D (E8) in closed form is(
msolE
mD (E8)

)
[D] = B>�

mG

mD (E8)
= B>�

(
� |(| − % [D]

)−1 m%G★

mD (E8)
[D] . (10.6)

Algorithm for Problem 10.8 | Let us provide an algorithm to solve Problem 10.8
for pMCs. Eq. (10.6) provides a closed-form expression for the partial derivative of the
solution function, which is a function of the vector G★ in Eq. (10.4). However, due to the
inversion of (� |(| − % [D]), it is generally more efficient to solve the system of equations
in Eq. (10.5). Doing so, the partial derivative of the solution with respect to D (E8) is
obtained by: (1) solving Eq. (10.4) withD to obtain G★ ∈ R |(| , and (2) solving the equation
system in Eq. (10.5) with |(| unknowns for this vector G★. We repeat step 2 for all of
the |+ | parameters. Thus, we can solve Problem 10.8 by solving |+ | + 1 linear equation
systems with |(| unknowns each.

10.4.2 Computing : highest derivatives
To solve Problem 10.9 for pMCs, we present a method to compute only the : ≤ |+ |
parameters with the highest (or lowest) partial derivative without computing all deriv-
atives explicitly. Without loss of generality, we focus on the highest derivative. We
can determine these parameters by solving a combinatorial optimization problem with
binary variables I8 ∈ {0, 1} for 8 = 1, . . . , |+ |. Our goal is to formulate this optimization
problem such that an optimal value of I★8 = 1 implies that parameter E8 ∈ + belongs to
the set of : highest derivatives. Concretely, we formulate the following mixed integer

180 10 Sensitivity Analysis for Parametric Markov Chains

linear problem (MILP) [Wol20]:

maximize
~∈R|(|, I∈{0,1} |+ |

B>� ~ (10.7a)

subject to
(
� |(| − % [D]

)
~ =

|+ |∑
8=1

I8
m%G★

mD (E8)
[D] (10.7b)

I1 + · · · + I |+ | = :. (10.7c)

Constraint (10.7c) ensures that any feasible solution to Eq. (10.7) has exactly : nonzero
entries. Since matrix (� |(| − % [D]) is invertible by construction (see, e.g., [Put94]),
Eq. (10.7) has a unique solution in ~ for each choice of I ∈ {0, 1} |+ | . Thus, the objective
value B>

�
~ is the sum of the derivatives for the parameters E8 ∈ + for which I8 = 1. Since

we maximize this objective, an optimal solution ~★, I★ to Eq. (10.7) is guaranteed to
correspond to the : parameters that maximize the derivative of the solution in Eq. (10.6).
We state this correctness claim for the MILP:

Proposition 10.10 (k highest derivatives for pMC) Let ~★, I★ be an optimal
solution to Eq. (10.7). Then, the set +★ = {E8 ∈ + : I★8 = 1} is a subset of : ≤ |+ |
parameters with maximal derivatives.

The set +★ may not be unique. However, to solve Problem 10.9, it suffices to obtain a
set of : parameters for which the partial derivatives are maximal. Therefore, the set +★

provides a solution to Problem 10.9. We remark that, to solve Problem 10.9 for the :
lowest derivatives, we change the objective in Eq. (10.7a) to minimize B>

�
~.

Linear relaxation | The MILP in Eq. (10.7) is computationally intractable for high
values of |+ | and : . Instead, we compute the set +★ via a linear relaxation of the
MILP. Specifically, we relax the binary variables I ∈ {0, 1} |+ | to continuous variables
I ∈ [0, 1] |+ | . As such, we obtain the following LP relaxation of Eq. (10.7):

maximize
~∈R|(|, I∈R|+ |

B>� ~ (10.8a)

subject to
(
� |(| − % [D]

)
~ =

|+ |∑
8=1

I8
m%G★

mD (E8)
[D] (10.8b)

0 ≤ I8 ≤ 1, ∀8 = 1, . . . , |+ | (10.8c)
I1 + · · · + I |+ | = :. (10.8d)

Denote by ~+, I+ the solution of the LP relaxation in Eq. (10.8). For details on such linear
relaxations of integer problems, we refer to [HK10; MG07]. In our case, every optimal
solution ~+, I+ to the LP relaxation with only binary values I+8 ∈ {0, 1} is also optimal
for the MILP, resulting in the following theorem.

Theorem 10.11 (Correctness of LP relaxation) The LP relaxation in Eq. (10.8)
has an optimal solution ~+, I+ with I+ ∈ {0, 1} |+ | (i.e., every I+8 is binary), and every
such a solution is also an optimal solution of the MILP in Eq. (10.7).

10

10.5 Differentiating Solution Functions for pRMCs 181

Proof. From invertibility of
(
� |(| − % [D]

)
, we know that Eq. (10.7) is equivalent to

maximize
I∈{0,1} |+ |

|+ |∑
8=1

I8

(
B>�

(
� |(| − % [D]

)−1 m%G★

mD (E8)
[D]

)
(10.9a)

subject to I1 + · · · + I |+ | = :. (10.9b)

The linear relaxation of Eq. (10.9) is an LP whose feasible region has integer vertices
(see, e.g., [HK10]). Therefore, both Eq. (10.9) and its relaxation Eq. (10.8) have an
integer optimal solution I+, which constructs I★ in Eq. (10.7).

The binary solutions I+ ∈ {0, 1} |+ | are the vertices of the feasible set of the LP in
Eq. (10.8). A simplex-based LP solver can be set to return such a solution.2

Algorithm for Problem10.9 | We provide a two-step algorithm to solve Problem 10.9
for pMCs. First, for pMCD+ and parameter instantiationD, we solve the linear equation
system in Eq. (10.5) for G★ to obtain the solution solE [D] = B>

�
G★. Second, we fix a

number of parameters : ≤ |+ | and solve the LP relaxation in Eq. (10.8). The set +★ of
parameters with maximal derivatives is then obtained as defined in Proposition 10.10.
The parameter set +★ is a solution to Problem 10.9.

10.5 Differentiating Solution Functions for pRMCs
We shift focus to pRMCs. Recall that robust solutions solE,' [D] for pRMCs are computed
for the minimizing stationary nature g ∈ TM

+
'
[D]

stat . For each state B ∈ (, such a nature
fixes a probability distribution ? ∈ P(B) in the uncertain transition function of the
pRMC. Thus, we derive the following equation system, where, as for pMCs, G ∈ R |(|
represents the expected cumulative reward in each state.

GB = 0, ∀B ∈ () (10.10a)
GB = AB + inf

?∈P(B) [D]

(
?>G

)
, ∀B ∈ (\ () . (10.10b)

Solving Eq. (10.10) directly corresponds to solving a system of nonlinear equations
due to the inner infimum in Eq. (10.10b). The standard approach from robust optimiza-
tion [BGN09] is to leverage the dual problem for each inner infimum, e.g., as is done
in [PLSS13; CFRS14]. For each B ∈ (, P(B) is a parametric convex polytope)�,1 as
defined in Eq. (10.2). The dimensionality of this polytope depends on the number of
successor states, which is typically much lower than the total number of states. To make
the number of successor states explicit, we denote by post(B) ⊆ (the successor states
of B ∈ (and define)�,1 ∈ T |post(B) | [+] with �B ∈ Q<B×|post(B) | and 1B [D] ∈ Q<B (recall
<B is the number of halfspaces of the polytope). Then, the infimum in Eq. (10.10b) for

2Even if a non-vertex solution ~+, I+ is obtained, we can use an arbitrary tie-break rule on I+, which
forces each I+8 binary and preserves the sum in Eq. (10.8d).

182 10 Sensitivity Analysis for Parametric Markov Chains

each B ∈ (\ () is written as follows:

minimize ?>G (10.11a)
subject to �B [D]? ≤ 1B [D] (10.11b)

1>? = 1, (10.11c)

where 1 denotes a column vector of ones of appropriate size. Let Gpost(B) = [GB]B∈post(B)
be the vector of decision variables corresponding to the (ordered) successor states in
post(B). The dual problem of Eq. (10.11), with dual variables U ∈ R<B and V ∈ R (see,
e.g., [BJS11] for details), is written as follows:

maximize −1B [D]>U − V (10.12a)
subject to �B [D]>U + Gpost(B) + V1 = 0, U ≥ 0. (10.12b)

By using this dual problem in Eq. (10.10b), we obtain the following LP with decision
variables G ∈ R |(| , and with UB ∈ R<B and VB ∈ R for every B ∈ (:

maximize B>� G (10.13a)
subject to GB = 0, ∀B ∈ () (10.13b)

GB = AB −
(
1B [D]>UB + VB

)
, ∀B ∈ (\ () (10.13c)

�B [D]>UB + Gpost(B) + VB1 = 0, UB ≥ 0, ∀B ∈ (\ () . (10.13d)

The reformulation of Eq. (10.10) to Eq. (10.13) requires that every element of the initial
distribution B� is nonnegative, which is trivially satisfied because B� is a probability
distribution. Denote by G★, U★, V★ an optimal point of Eq. (10.13). The G★ element of this
optimum is also an optimal solution of Eq. (10.10) [BGN09]. Thus, the robust solution
defined in Eq. (10.3) is solE,' [D] = B>� G★.

10.5.1 Computing derivatives via pMCs
Toward solving Problem 10.8, we provide some intuition about computing robust solu-
tions for pRMCs. The infimum in Eq. (10.10b) finds the worst-case point ?★ in each set

%1 = 1

%2 = 1

%3 = 1

?★

?
1

?
2

?
3

?1

?2

?3

G

(a) Well-defined optimum.

%1 = 1

%2 = 1

%3 = 1

?★

?
1

?
2

?
3

?1

?2

?3G

(b) Non-unique optimum.

%1 = 1

%2 = 1

%3 = 1

?★

?
1

?
2

?
3

?1

?2

?3
G

(c) Too many active constraints.

Figure 10.4: Three polytopic uncertainty sets (blue shade), with the vector G , the worst-
case points ?★, and the active constraints shown in red.

10

10.5 Differentiating Solution Functions for pRMCs 183

P(B) [D] that minimizes (?★)>G . This minimization is visualized in Fig. 10.4a for an
uncertainty set that captures three probability intervals ?

8
≤ ?8 ≤ ?8 , 8 = 1, 2, 3. Given

the optimization direction G (arrow in Fig. 10.4a), the point ?★ (red dot) is attained at the
vertex where the constraints ?

1
≤ ?1 and ?

2
≤ ?2 are active.3 Thus, we obtain that the

point in the polytope that minimizes (?★)>G is ?★ = [?
1
, ?

2
, 1 − ?

1
− ?

2
]>. Using this

procedure, we can obtain a worst-case point ?★B for each state B ∈ (. We can use these
points to convert the pRMC into an induced pMC with transition function % (B) = ?★B
for each state B ∈ (.

For small changes in the parameters, the point ?★ in Fig. 10.4a changes smoothly, and
its closed-form expression (i.e., the functional form) remains the same. As such, it feels
intuitive that we could apply the methods from Sect. 10.4 to compute partial derivatives
on the induced pMC. However, this approach does not always work, as illustrated by
the following two corner cases.
1. Consider Fig. 10.4b, where the optimization direction defined by G is parallel to

one of the facets of the uncertainty set. In this case, the worst-case point ?★ is not
unique, but an infinitesimal change in the optimization direction G will force the
point to one of the vertices again. Which point should we choose to obtain the
induced pMC (and does this choice affect the derivative)?

2. Consider Fig. 10.4c with more than |(|−1 active constraints at the point ?★. Observe
that decreasing ?3 changes the point ?★ while increasing ?3 does not. In fact, the
optimal point ?★ changes non-smoothly with the halfspaces of the polytope. As
a result, also the solution changes non-smoothly, and thus, the derivative is not
defined. How do we deal with such a situation?

These examples show that computing derivatives via an induced pMC by obtaining
?★B for every state B ∈ (can be tricky or is, in some cases, not possible at all. In what
follows, we present a method that directly derives a set of linear equations to obtain
derivatives for pRMCs (all or only the : highest) based on the solution to the LP in
Eq. (10.13). Using this method, we intrinsically identify the corner cases above in which
the derivative is not defined.

10.5.2 Computing derivatives explicitly
We now develop a dedicated method for identifying whether the derivative of the
solution function for a pRMC exists, and if so, to compute this derivative. Observe
from Fig. 10.4 that the point ?★ is uniquely defined and has a smooth derivative only in
the case of Fig. 10.4a, which has two active constraints. For only one active constraint
(Fig. 10.4b), the point is underdetermined, while for three active constraints (Fig. 10.4c),
the derivative may not be smooth. In the general case, having exactly = − 1 active
constraints (whose facets are nonparallel) is a sufficient condition for obtaining a unique
and smoothly changing point ?★ in the =-dimensional probability simplex.

Optimal dual variables | The optimal dual variables U★B ≥ 0 for each B ∈ (\ () in
Eq. (10.13) indicate which constraints of the polytope �B [D]? ≤ 1B [D] are active, i.e.,
for which rows 0B,8 [D] of �B [D] it holds that 0B,8 [D]?★ = 1B [D]. Specifically, a value
of UB,8 > 0 implies that the 8th constraint is active, and UB,8 = 0 indicates a nonactive
3An inequality constraint 6G ≤ ℎ is active under the optimal solution G★ if 6G★ = ℎ [BV14].

184 10 Sensitivity Analysis for Parametric Markov Chains

constraint [BV14]. We define �B = [41, . . . , 4<B
] ∈ {0, 1}<B as a vector whose binary

values 48 ∀8 ∈ {1, . . . ,<B } are given as 48 = ÈU★B,8 > 0É.4 Moreover, denote by diag(�B)
the matrix with �B on the diagonal and zeros elsewhere. We reduce the LP in Eq. (10.13)
to a system of linear equations that encodes only the constraints that are active under
the worst-case point ?★B for each B ∈ (\ () :

GB = 0, ∀B ∈ () (10.14a)
GB = AB −

(
1B [D]>diag(�B)UB + VB

)
, ∀B ∈ (\ () (10.14b)

�B [D]>diag(�B)UB + Gpost(B) + VB1 = 0, UB ≥ 0, ∀B ∈ (\ () . (10.14c)

Differentiation | However, when does Eq. (10.14) have a (unique) optimal solu-
tion? To provide some intuition, let us write the equation system in matrix form, i.e.,
�

[
G U V

]>
= 3 , where we omit an explicit definition of matrix � and vector 3 for

brevity. It is apparent that if matrix � is nonsingular, then Eq. (10.14) has a unique
solution. This requires matrix � to be square, which is achieved if, for each B ∈ (\ () ,
we have |post(B) | = ∑

�B + 1. In other words, the number of successor states of B is
equal to the number of active constraints of the polytope plus one. This confirms our
previous intuition from Sect. 10.5.1 on a polytope for |post(B) | = 3 successor states,
which required

∑<B

8=1 �8 = 2 active constraints.

Let us formalize this intuition about computing derivatives for pRMCs. We can
compute the derivative of the solution G★ by differentiating the equation system in
Eq. (10.14) through the product rule in a very similar manner to the approach in Sect. 10.4.
We state this key result in the following theorem.

Theorem 10.12 (Derivatives for pRMCs) Given a pRMC M+
'

and an instanti-
ation D, compute G★, U★, V★ for Eq. (10.13) and choose a parameter E8 ∈ + . The
partial derivatives mG

mD (E8) ,
mU

mD (E8) , and
mV

mD (E8) are obtained as the solution to the linear
equation system

mGB

mD (E8)
= 0, ∀B ∈ () (10.15a)

mGB

mD (E8)
+ 1B [D]>diag(�B)

mUB

mD (E8)
+ mVB

mD (E8)
= −(U★B)>diag(�B)

m1B [D]
mD (E8)

,

∀B ∈ (\ () (10.15b)

�B [D]>diag(�B)
mUB

mD (E8)
+
mGpost(B)
mD (E8)

+ mVB

mD (E8)
1 = −(U★B)>diag(�B)

m�B [D]
mD (E8)

,

∀B ∈ (\ () . (10.15c)

Proof. The proof follows from applying the product rule to the equation system in
Eq. (10.14). The derivative of the right-hand side Eq. (10.14a) (i.e., for all terminal

4Here, ÈGÉ is an Iverson bracket, which is defined as ÈGÉ = 1 if G is true and as ÈGÉ = 0 otherwise.

10

10.5 Differentiating Solution Functions for pRMCs 185

states B ∈ ()) is trivially zero. The derivative of Eq. (10.14b) is

mGB

mD (E8)
= − m (1B [D]

>diag(�B)UB)
mD (E8)

− mVB

mD (E8)

mGB

mD (E8)
= −(U★B)>diag(�B)

m1B [D]
mD (E8)

− 1B [D]>diag(�B)
mU

mD (E8)
− mVB

mD (E8)
,

which, after rearranging, yields Eq. (10.15b). The derivative of Eq. (10.14c) is

(U★B)>diag(�B)
m�B [D]
mD (E8)

+�B [D]>diag(�B)
mUB

mD (E8)
+
mGpost(B)
mD (E8)

+ mVB

mD (E8)
1,

which after rearranging yields Eq. (10.15c), so we conclude the proof. �

To compute the derivative for a parameter E8 ∈ + , we thus solve a system of linear
equations of size |(| + ∑

B∈(\() |post(B) |. Using Theorem 10.12, we obtain sufficient
conditions for the solution function to be differentiable.

Lemma 10.13 (Differentiability for pRMCs) Write the linear equation system
in Eq. (10.15) in matrix form, i.e.,

�

[
mG

mD (E8) ,
mU

mD (E8) ,
mV

mD (E8)

]>
= 3, (10.16)

for � ∈ R@×@ and 3 ∈ R@ , @ = |(| + ∑
B∈(\() |post(B) |, which are implicitly given

by Eq. (10.15). The solution function solE,' [D] is differentiable at instantiation D if
matrix � is nonsingular, in which case we obtain (msolE,'

mD (E8)) [D] = B
>
�

mG
mD (E8) .

Proof. The partial derivative of the solution function is msolE,'
mD (E8) [D] = B

>
�

mG★

mD (E8 , where
mG★

mD (E8 is (a part of) the solution to Eq. (10.14). Thus, the solution function is differenti-
able if there is a (unique) solution to Eq. (10.14), which is guaranteed if matrix � is
nonsingular. Thus, the claim in Lemma 10.13 follows.

Algorithm for Problem 10.8 | We use Theorem 10.12 to solve Problem 10.8 for
pRMCs, similarly as for pMCs. Given a pRMCM+

'
and an instantiation D, we first solve

Eq. (10.13) to obtain G★, U★, V★. Second, we use U★B to compute the vector �B of active
constraints for each B ∈ (\ () . Third, for every parameter E ∈ + , we solve the equation
system in Eq. (10.15). Thus, to compute the gradient of the solution function, we solve
one LP and |+ | linear equation systems.

10.5.3 Computing : highest derivatives

Analogous to the MILP in Eq. (10.7) formulated for a pMC, we can compute the : ≤ |+ |
highest derivatives of a pRMC based on the solution to a MILP. For brevity, let us define
the notations G ′B =

mGB
mD (E8) ∈ R, U

′
B =

mUB
mD (E8) ∈ R

<B and V ′B =
mVB

mD (E8) ∈ R. Using this

186 10 Sensitivity Analysis for Parametric Markov Chains

notation, we obtain the following MILP:

maximize
G ′,U ′,V ′,I∈{0,1} |+ |

B>� G
′ (10.17a)

subject to G ′B = 0, ∀B ∈ () (10.17b)

G ′B + 1B [D]>diag(�B)U ′B + V ′B = −(U★B)>diag(�B)
|+ |∑
8=1

I8
m1B [D]
mD (E8)

,

∀B ∈ (\ () (10.17c)

�B [D]>diag(�B)U ′B + G ′post(B) + V
′
B1 = −(U★B)>diag(�B)

|+ |∑
8=1

I8
m�B [D]
mD (E8)

,

∀B ∈ (\ () . (10.17d)
I1 + · · · + I |+ | = :. (10.17e)

Observe that the difference between the constraints in Eqs. (10.17c) and (10.17d), versus
the equation system in Eq. (10.15) lies in the summation over 8 = 1, . . . , |+ |. We derive
the same LP relaxation as in Eq. (10.8), i.e., we relax the binary variables I ∈ {0, 1} |+ | to
continuous variables I ∈ [0, 1] |+ | . Since Eq. (10.17) has the exact same characteristics as
Eq. (10.7), Theorem 10.11 applies equivalently to the case for pRMCs. In other words,
the LP relaxation is exact, and we can use the resulting solution to find the set +★ of
parameters with maximal derivatives using Proposition 10.10. This set +★ is a solution
to Problem 10.9 for pRMCs.

10.6 Numerical Experiments

We perform experiments to answer the following questions about our approach:

1. Is it feasible (in terms of computational complexity and runtimes) to compute all
|+ | derivatives, in particular compared to computing (robust) solutions?

2. How does computing only the : highest derivatives compare to computing all |+ |
derivatives?

3. Can we apply our approach to effectively determine for which parameters to sample
in a learning framework?

Let us briefly summarize the computations involved in answering these questions. First
of all, computing the solution solE(D) for a pMC, which is defined in Eq. (10.1), means
solving the linear equation system in Eq. (10.4). Similarly, computing the robust solution
solE,' (D) for a pRMC means solving the LP in Eq. (10.13). Then, solving Problem 10.8,
i.e., computing all |+ | partial derivatives, amounts to solving a linear equation system
for each parameter E ∈ + (namely, Eq. (10.4) for a pRMC and Eq. (10.15) for a pRMC). In
contrast, solving Problem 10.9, i.e., computing a subset +★ of parameters with maximal
(or minimal) derivative, means for a pMC that we solve the LP in Eq. (10.8) (or the
equivalent LP for a pRMC) and thereafter extract the subset of +★ parameters using
Proposition 10.10.

10

10.6 Numerical Experiments 187

Problem 3: Computing the : highest derivatives | A solution to Problem 10.9
is a set +★ of : parameters but does not include the computation of the derivatives.
However, it is straightforward to also obtain the actual derivatives

(
msolE,'
mD (E)

)
[D] for each

parameter E ∈ +★. Specifically, we solve Problem 10.8 for the : parameters in +★, such
that we obtain the partial derivatives for all E ∈ +★. We remark that, for : = 1, the
derivative follows directly from the optimal value B>

�
~+ of the LP in Eq. (10.8), so this

additional step is not necessary. We will refer to computing the actual values of the :
highest derivatives as Problem 3.

Reproducibility | We implement our approach in Python 3.10, using the model
checker Storm [HJKQ+22] to parse pMCs, Gurobi [Gur23] to solve LPs, and the SciPy
sparse solver [VGOH+19] to solve equation systems. All experiments run on a computer
with a 4GHz Intel Core i9 CPU and 64 GB RAM, with a timeout of one hour. Our
implementation is available at https://doi.org/10.5281/zenodo.7864260.

Grid world benchmarks | We use scaled versions of the grid world from the example
in Sect. 10.2 with over a million states and up to 10 000 terrain types. The vehicle only
moves right or down, both with 50% probability (wrapping around when leaving the
grid). Slipping only occurs when moving down and (slightly different from the example
in Sect. 10.2) means that the vehicle moves two cells instead of one. We obtain between
= 500 and 1 000 samples of each slipping probability. For the pMCs, we use maximum
likelihood estimation (?

#
, with ? the sample mean) obtained from these samples as

probabilities, whereas, for the pRMCs, we infer probability intervals using Hoeffding’s
inequality (see Q3 for details).

Benchmarks from literature | We consider several instances of parametric ex-
tensions of MCs and Markov decision processes (MDPs) from standard benchmark
suits [HKPQ+19; KNP11]. We also use pMC benchmarks from [CJJK+22] and [2] (our
paper on which Chapter 9 is based) as these models have more parameters than the tradi-
tional benchmarks. We extend these benchmarks to pRMCs by constructing probability
intervals around the pMC’s probabilities.

Results | The full results for all benchmarks are here omitted for brevity and instead
presented in [4, Appendix B, Tab. 2–3]. In this chapter, we highlight the most important
results, referring to [4] for the full details.

Q1. Computing solutions vs. derivatives
We investigate whether computing derivatives is feasible on p(R)MCs. In particular, we
compare the computation times for computing derivatives on p(R)MCs (Problems 1 and
3) with the times for computing the solution for these models.

In Fig. 10.5, we show for all benchmarks the times for computing the solution (defined
in Eqs. (10.1) and (10.3)), versus computing either a single derivative for Problem 10.8
(left) or the highest derivative of all parameters resulting from Problem 3 (right). A point
(G,~) in the left plot means that computing a single derivative took G seconds while
computing the solution took ~ seconds. A line above the (center) diagonal means we
obtained a speed-up over the time for computing the solution; a point over the upper
diagonal indicates a 10× speed-up or larger.

https://doi.org/10.5281/zenodo.7864260

188 10 Sensitivity Analysis for Parametric Markov Chains

0.01

0.1 1 5 20 100

1000
3000

0.01

0.1

1
5
20
100

1000
3000

Tim
eout

Timeout 10× faster

One derivative [s]

Co
m
pu

te
so
lu
tio

n
[s
]

pMC pRMC

0.01

0.1 1 5 20 100

1000
3000

0.01

0.1

1
5
20
100

1000
3000

Tim
eout

Timeout 10× faster

Highest derivative [s]

Co
m
pu

te
so
lu
tio

n
[s
]

pMC pRMC

Figure 10.5: Runtimes (log-scale) for computing a single derivative (left, Problem 1) or
the highest derivative (right, Problem 3), versus computing the solution
solE [D] or solE,' [D].

One derivative | The left plot in Fig. 10.5 shows that, for pMCs, the times for com-
puting the solution and a single derivative are approximately the same. This is expected
since both problems amount to solving a single equation system with |(| unknowns.
Recall that, for pRMCs, computing the solution means solving the LP in Eq. (10.13),
while for derivatives, we solve an equation system. Thus, computing a derivative for a
pRMC is relatively cheap compared to computing the solution, which is confirmed by
the results in Fig. 10.5.

Highest derivative | The right plot in Fig. 10.5 shows that, for pMCs, computing the
highest derivative is slightly slower than computing the solution (the LP to compute the
highest derivative takes longer than the equation system to compute the solution). On
the other hand, computing the highest derivative for a pRMC is still cheap compared
to computing the solution. Thus, if we are using a pRMC anyway, computing the
derivatives is relatively cheap.

Q2. Runtime improvement of computing only : derivatives
We want to understand the computational benefits of solving Problem 3 over solving
Problem 10.8. For Q2, we consider all models with |+ | ≥ 10 parameters.

An excerpt of results for the grid world benchmarks is presented in Table 10.1. Recall
that, after obtaining the (robust) solution, solving Problem 10.8 amounts to solving |+ |
linear equation systems, whereas Problem 3 involves solving a single LP and : equations
systems. From Table 10.1, it is clear that computing : derivatives is orders of magnitudes
faster than computing all |+ | derivatives, especially if the number of parameters is high.

We compare computing all derivatives (Problem 10.8) versus only the : = 1 or 10
highest derivatives (Problem 3). The left plot of Fig. 10.6 shows the runtimes for : = 1,
and the right plot for the : = 10 highest derivatives. The interpretation for Fig. 10.6 is
the same as for Fig. 10.5. From Fig. 10.6, we observe that computing only the : highest
derivatives leads to significant speed-ups, often of more than 10 times (except for very
small models). Moreover, the difference between : = 1 and : = 10 is minor, showing
that retrieving the actual derivatives after solving Problem 10.9 is relatively cheap.

10

10.6 Numerical Experiments 189

Table 10.1: Model sizes, runtimes, and derivatives for selection of grid world models.
XModel statistics Verifying Problem 1 Problem 3 Derivatives

Type |(| |Γ | #trans sol(') [D] Time [s] All derivs. [s] : = 1 [s] : = 10[B] Highest Error %

pMC 5000 50 14995 5.07 1.39 3.32 2.64 2.69 1.54e+00 0.0
pMC 5000 100 14995 5.05 1.36 4.17 2.63 2.66 1.28e+00 0.0
pMC 5000 921 14995 4.93 1.87 19.92 4.52 2.87 1.20e+00 0.0
pMC 80000 100 239995 8.01 25.54 98.47 45.18 46.87 1.95e+00 0.0
pMC 80000 1000 239995 8.01 25.64 612.97 48.92 58.20 2.08e+00 0.0
pMC 80000 9831 239995 7.93 25.52 5,650.25 347.76 1,343.59 2.10e+00 0.0
pMC 1280000 100 3839995 12.90 902.52 4,747.43 1,396.51 1,507.77 3.32e+00 0.0
pMC 1280000 1000 3839995 12.79 902.67 37,078.12 1,550.45 1,617.27 3.18e+00 0.0
pMC 1280000 10000 3839995 Timeoutb — — — — — —

pRMC 5000 100 14995 136.07 23.46 3.55 0.60 1.58 -1.26e-02 -0.0
pRMC 5000 921 14995 138.74 29.82 25.23 0.85 1.09 -4.44e-03 -0.0
pRMC 20000 100 59995 2,789.77 1,276.43 15.68 2.40 2.70 -4.96e-01 -0.1
pRMC 20000 1000 59995 2,258.41 339.96 159.70 3.53 4.09 -9.51e-02 -0.0
pRMC 80000 100 239995 Timeoutb — — — — — —

a Extrapolated from the runtimes for 10 to all |+ | parameters.
b Timeout (1 hour) occurred for verifying the p(R)MC, not for computing derivatives.

0.01

0.1 1 5 20 100

1000
3000

0.01

0.1

1
5
20
100

1000
3000

Tim
eout

Timeout
10× faster

: = 1 highest derivative [s]

A
ll
de
riv

at
iv
es

[s
]

pMC pRMC

0.01

0.1 1 5 20 100

1000
3000

0.01

0.1

1
5
20
100

1000
3000

Tim
eout

Timeout
10× faster

: = 10 highest derivatives [s]

A
ll
de
riv

at
iv
es

[s
]

pMC pRMC

Figure 10.6: Runtimes (log-scale) for computing the highest (left) or 10 highest (right)
derivatives (Problem 3), versus computing all derivatives (Problem 10.8).

Numerical stability | While our algorithm is exact, our implementation uses floating-
point arithmetic for efficiency. To evaluate the numerical stability, we compare the
highest derivatives (solving Problem 3 for : = 1) with an empirical approximation of
the derivative obtained by perturbing the parameter by 10−3. The difference (column
‘Error. %’ in Table 10.1) between both is marginal, indicating that our implementation is
sufficiently numerically stable to return accurate derivatives.

Q3. Application in a learning framework
Reducing the sample complexity is a key challenge in learning under uncertainty [Kak03;
MBPJ23]. Especially in stochastic environments, learning is very data-intensive, and
realistic applications tend to require millions of samples to provide tight bounds on
measures of interest [BHTB+18]. Motivated by this challenge, we apply our approach
in a learning framework to investigate if derivatives can be used to effectively guide
exploration, compared to alternative exploration strategies.

190 10 Sensitivity Analysis for Parametric Markov Chains

0 250

500

750

1,000

0

50

100

150

200

True solution

Steps (of 25 samples each)

Ro
bu

st
so
lu
tio

n
Uniform
Interval
ExpVisits*Width
Derivative

(a) Slippery grid world.

0 2,500

5,000

7,500

10,000

0.1

0.2

0.3

0.4

True solution

Steps (of 250 samples each)

Ro
bu

st
so
lu
tio

n

Uniform
Interval
ExpVisits*Width
Derivative

(b) Drone motion planning.

Figure 10.7: Robust solutions for each sampling strategy in the learning framework for
the grid world (a) and drone (b) benchmarks. Averages values of 10 (grid
world) or 5 (drone) repetitions are shown, with shaded areas showing the
min/max of all repetitions.

Models | We consider the problem of where to sample in (1) a slippery grid world
with |(| = 800 and |+ | = 100 terrain types, and (2) the drone benchmark from [CJJK+22]
with |(| = 4 179 and |+ | = 1 053 parameters. As in the motivating example in Sect. 10.2,
we learn a model of the unknown MC in the form of a pRMC, where the parameters are
the sample sizes for each parameter. We assume access to a model that can arbitrarily
sample each parameter (i.e., the slipping probability in the case of the grid world). We
use an initial sample size of #8 = 100 for each parameter 8 ∈ {1, . . . , |+ |}, from which
we infer a V = 0.9 (90%) confidence interval usingHoeffding’s

inequality
Hoeffding’s inequality. The interval

for parameter 8 is [?̂8 − n8 , ?̂8 + n8], with ?̂8 the sample mean and n8 =
√

log 2−log (1−V)
2# (see,

e.g., [BLM13] for details).

Learning scheme | We iteratively choose for which parameter E8 ∈ + to obtain
25 (for the grid world) or 250 (for the drone) additional samples. We compare four
strategies for choosing the parameter E8 to sample for: (1) with the highest derivative,
i.e., solving Problem 3 for : = 1; (2) with the biggest interval width n8 ; (3) uniformly;
and (4) sampling according to the expected number of visits times the interval width
(see [4, Appendix B.1] for details). After each step, we update the robust upper bound
on the solution for the pRMC with the additional samples.

Results | The upper bounds on the solution for each sampling strategy, as well as the
solution for the MC with the true parameter values, are shown in Fig. 10.7. For both
benchmarks, our derivative-guided sampling strategy converges to the true solution
faster than the other strategies. Notably, our derivative-guided strategy accounts for
both the uncertainty and importance of each parameter, which leads to a lower sample
complexity required to approach the true solution.

10

10.7 Related Work 191

10.7 Related Work
We discuss related work in three areas: pMCs, their extension to parametric interval
Markov chains (pIMCs), and general sensitivity analysis methods.

Parametric Markov chains | As we also discussed in Chapter 3, pMCs [Daw04;
LMT07] have traditionally been studied in terms of computing the solution func-
tion [HHZ11b; DJJC+15; BMS16; FTG16; FCGA21; JJK22]. For our paper, particularly
relevant are [SJK21], which checks whether a derivative is positive (for all parameter
valuations), and [HSJM+22], which solves parameter synthesis via gradient descent.
We note that all these problems are (co-)ETR complete [JKPW21] and that the solution
function is exponentially large in the number of parameters [BHHJ+20], whereas we
consider a polynomial-time algorithm. Furthermore, practical verification procedures for
uncontrollable parameters (as we do) are limited to less than 10 parameters. Parametric
verification is used in [PWHA17] to guide model refinement by detecting for which
parameter values a specification is satisfied. In contrast, we consider slightly more
conservative RMCs and aim to stepwise optimize an objective. Solution functions also
provide an approach to compute and refine confidence intervals [CGJP+16]; however,
the size of the solution function hampers scalability.

Parametric interval Markov chains (pIMCs) | To the best of our knowledge,
pRMCs have not been studied before. Nevertheless, their slightly more restricted version
with interval-valued transition probabilities with parametric bounds, called parametric
interval Markov chains (pIMCs) have been considered by some authors. Work on pIMCs
falls into two categories. First, consistency [DLP16; PP18] asks whether there exists a
parameter instantiation such that the (reachable fragment of the) induced interval MC
contains valid probability distributions. Second, parameter synthesis for quantitative
and qualitative reachability in pIMCs with up to 12 parameters [BDFL+18].

Perturbation analysis | Perturbation analysis considers the change in solution by
any perturbation vector- for the parameter instantiation, whose norm is upper bounded
by X , i.e., | |- | | ≤ X (or conversely, which X ensures the solution perturbation is below a
given maximum). Likewise, [Cho19] uses the distance between two instantiations of a
pMC (called augmented interval MC) to bound the change in reachability probability.
Similar analyses exist for stationary distributions [ABH16]. These problems are closely
related to the verification problem in pMCs and are equally (in)tractable if there are
dependencies over multiple parameters. To improve tractability, a follow-up [SFCR16]
derives asymptotic bounds based on first or second-order Taylor expansions. Other
approaches to perturbation analysis analyze individual paths of a system [FH94; CC97;
CW98]. Sensitivity analysis in (parameter-free) imprecise MCs, a variation to RMCs, is
thoroughly studied in [CHQ08].

Exploration in learning | Similar to Q3 considered in Sect. 10.6, determining where
to sample is relevant in many learning settings. Approaches such as probably approx-
imately correct (PAC) statistical model checking [AKW19; AGKM22] and model-based
reinforcement learning [MBPJ23] commonly use optimistic exploration policies [Mun14].
By contrast, we guide exploration based on the sensitivity analysis of the solution func-
tion with respect to the parametric model.

192 10 Sensitivity Analysis for Parametric Markov Chains

10.8 Discussion
We discuss interesting directions for further research along three dimensions: (1) com-
puting derivatives for models with nondeterminism and applying this extension in a
learning scheme, and (2) considering higher-order derivatives to obtain explicit bounds
on the solution function.

Models with nondeterminism | Computing derivatives for models with non-
determinism, in particular parametric (robust) Markov decision processes, is an interest-
ing yet challenging avenue for further research. The challenge is that each policy of the
parametric MDP defines a different solution function, and one is typically interested in
the maximum of all these functions. As a result, solution functions for parametric MDPs
are nonsmooth, and to compute derivatives, one first has to fix a policy to resolve the
nondeterminism. The problem is that different policies may have derivatives pointing
in opposite directions. As a result, we may end up switching between different policies
that have derivatives pointing in the opposite direction. Hence, we postulate that one
falls more easily into local optima.

One idea is to encode the policy explicitly in the optimization problems that we
formulated to compute derivatives. However, this renders our optimization problems
nonconvex, because policy variables are multiplied with variables representing the para-
meters + . In the context of partially observable Markov decision processes (POMDPs),
such nonconvex optimization problems have been (approximately) solved by convexi-
fying them using different relaxations, such as convex-concave procedures [SJCT20;
LB16] and sequential convex programming schemes [CJJM+21; MSXA18]. However, it is
questionable how informative derivatives from such a convexification of the problem still
are. Nevertheless, we believe such a direction could be interesting for further research.

Embedding our techniques in model-based (reinforcement) learning | Exten-
sions to models with nondeterminism are particularly interesting for model-based
reinforcement learning [MBPJ23]. In this context, our methods could be used to guide
learning in an MDP under the assumption that the parametric structure of its transition
function is known. There is, however, one major problem with such MDP learning
applications: The derivatives of parameters relevant to states that are never visited by
the current policy are always zero. For example, in the grid world from Fig. 10.1a, the
ground vehicle never visits the terrain types related to parameter E3, and thus, the deriv-
ative with respect to this parameter is zero. However, this derivative of zero does not
mean that this parameter is not important at all: Under a different policy, the parameter
could suddenly be relevant to sample more. This issue is a typical manifestation of
the exploration-exploitation trade-off, which has received much attention in the rein-
forcement learning community [SB98; KLM96]. Dealing with exploration-exploitation
trade-offs in an optimal yet tractable manner is a wide-open problem.

Bounds on solution function | In this chapter, we have focused on computing
the gradient of the solution function, that is, the vector of all partial derivatives. The
gradient provides information on how the solution function changes with (infinitesimal)
changes in the parameters, but not with respect to larger changes in the parameters.
For example, our methods can not immediately be used to perform a perturbation
analysis (see the related work), where the goal is to obtain an upper and lower bound

10

10.8 Discussion 193

on the solution function over a region in the parameter space. Still, one could try to
construct a Taylor expansion of the solution function, by considering not just the (first-
order) but also the higher-order partial derivatives. However, the size of this Taylor
expansion is exponential in the number of parameters. For example, for the second-order
expansion, one needs to consider differentiating with respect to all combinations of two
parameters. Thus, it remains an open research question to what extent such an approach
is tractable and whether the resulting bounds on the solution function are worth the
high computational expenses.

Summary

î We introduced parametric robust MCs (pRMCs), which combine uncertainty
in transition probabilities with dependencies between states.

î Partial derivatives of the solution function are an effective measure of how
values change with respect to the parameters.

î Computing only the : highest parameters is orders of magnitudes faster
than computing all |+ | parameters.

î Partial derivatives can effectively guide sampling to increase the sample
efficiency in a learning framework.

195

Part IV

Continuous-Time Markov Chains

11

197

11 Foundations of CTMCs
Summary | Continuous-time Markov chains (CTMCs) are stochastic processes sub-
ject to random timing that can be interpreted as the continuous-time counterpart of
discrete-time Markov chains (DTMCs). In this background chapter, we present the
fundamentals of CTMCs and how to perform common analyses. We also introduce
parametric CTMCs (pCTMCs), which relax the assumption that transition rates are
precisely known and instead model transition rates as (polynomials over) parameters.

Origins | None of the material presented in this chapter is novel, and much of the
background on CTMCs originates from the seminal papers [BHHK03; ASSB00].

Background | While not strictly required to understand this chapter, familiarity with
MDPs (Chapter 3) and pMDPs (Chapter 8) may help the reader to understand the basics
of CTMCs and pCTMCs.

11.1 Introduction
Thus far, we have considered stochastic models in which the state evolves dynamically
over discrete time steps. In practice, such discrete-time models are often the result of
discretizing time in a system of differential equations. For example, an epidemic can ab-
stractly be modeled using a so-called SIR (susceptible-infected-recovered) model [AB12],
which is shown in Fig. 11.1 for a population of two. Initially, one person is susceptible
(S), and the other is infected (I). From this initial state, there is a certain probability that
the infected person infects the susceptible person within one discrete time step (and
similarly, with some probability, the infected person recovers before infecting the other).

A practical consideration when using such a model is what time period every discrete
step should resemble. If we choose a small time period (e.g., one minute), we obtain a
very detailed but potentially also very expensive model to analyze. On the other hand,
if we choose a long time period (e.g., a month), we obtain a much coarser model but
also lose a lot of detail and potentially incur a high approximation error. This raises the
following natural question. Can we avoid discretizing time and directly reason about a
continuous-time model where transitions between states can occur at any point in time?

SR SI II RI RR
0.2 0.6 0.5 0.2

1 0.2 0.5 0.8 1

Figure 11.1: DTMC for the SIR model with a population of two.

198 11 Foundations of CTMCs

SR SI II RI RR
0.04 0.05 0.08 0.04

Figure 11.2: CTMC for the SIR model with a population of two, where labels on the
edges represent the transition rates.

11.2 Continuous-Time Markov Chains
In this final part of the thesis, we consider such continuous-time models that alleviate
the challenges mentioned above. Specifically, we study continuous-time Markov chains
(CTMCs), which are stochastic processes subject to random timing. While transitions in
a discrete-time Markov chain (DTMC) occur at fixed discrete time steps, transitions in a
CTMC can occur at any continuous point in time. CTMCs are widely used to model com-
plex probabilistic systems in reliability engineering [RS15], network processes [HHK00;
HMS99], systems biology [CDPK+17; BS18] and epidemic modeling [All17].

Recall that Distr(-) is the set of all distributions over a set - . Formally, we define
a CTMC as follows. Note that, without loss of generality, we define CTMCs with an
initial state distribution, rather than a single initial state (as we did for Markov decision
processes (MDPs) in Chapter 3).1

Definition 11.1 (CTMC) A (labeled)continuous-
time

Markov
chain

continuous-time Markov chain (CTMC) is a
tuple C B ((, B� , ', !) with a finite set (of states, an initial state distribution B� ∈
Distr((), a transition rate function ' : (× (→ Q≥0, and a labeling function ! : (→
2�% , where �% is a set of atomic propositions.

Intuitively, a rate '(B, B′) > 0 implies there is atransition transition from state B ∈ (to B′ ∈ (.
If '(B, B′) > 0 for more than one state B′ ∈ (, a race condition between the transitions
exists. Let � : (→ Q≥0 be the so-calledexit rates exit rates, where � (B) = ∑

B′∈('(B, B′) is the
total rate at which any outgoing transition of state B ∈ (is taken. Then, the probability
% (B, B′, C) of transitioning from B ∈ (to B′ ∈ (within C ∈ R≥0 time units is

% (B, B′, C) = '(B, B′)
� (B) ·

(
1 − 4−� (B) ·C

)
.

The exit rate � (B) characterizes theresidence
time

residence time for state B ∈ (. Specifically, the
probability to reside in state B at most C ∈ R≥0 time units is 1 − 4−� (B) ·C . Hence, the
average residence time of state B is 1

� (B) . CTMCs exhibit the Markov specification in the
following way: The probability of leaving the state B ∈ (within the next C ∈ R≥0 time
units is independent of how many time units ago the model entered state B .

Example 11.2 (Epidemic model as CTMC) In reality, getting infected and re-
covering from the disease in the epidemic DTMC model in Fig. 11.1 should not be
restricted to discrete time steps. Thus, a more realistic model for the epidemic is the

1Recall from Remark 10.1 that we can always transform a model with an initial state distribution into
one with a single initial state and vice versa.

11

11.2 Continuous-Time Markov Chains 199

CTMC shown in Fig. 11.2 [All17]. The label on each edge between states B and B′ is
the transition rate '(B, B′) of the CTMC. Observe that the CTMC does not explicitly
model self-loops (as is the case in the DTMC in Fig. 11.1 does); instead, self-loops in
CTMCs are implicit.

Transient distribution | The transient
distribution

transient probability distribution of a CTMC specifies
the probability distribution over states as a function of time, given some initial distri-
bution B ∈ Distr((). Concretely, the transient distribution PB (C) ∈ Distr(() from state
distribution B after time C ≥ 0 is

PB (C) = B · 4 ('−diag(�)) ·C ,

where diag(�) is the diagonal matrix with the exit rates � (interpreted as a vector) on
the diagonal. Intuitively, PB (C) (B′) ∈ [0, 1] is the probability of being in state B′ ∈ (at
time C , when starting from the state distribution B at time zero.

Similarly, for a fixed starting state B ∈ (, we can compute the transient distribution
for the Dirac distribution XB (as defined in Chapter 2) for state B:

PXB (C) = XB · 4 ('−diag(�)) ·C .

Example 11.3 (Transient distribution for epidemic CTMC) For the epidemic
CTMC in Fig. 11.2, consider a state ordering [SI, SR, II, RI, RR]. Then, the initial state
is B� = [1, 0, 0, 0, 0]. We wish to compute the transient distribution from B� at time
C = 10, which is PB� (10) = B� · 4 ('−diag(�)) ·10. Based on the state ordering, we can
interpret the transition rate function ' as a matrix and the exit rates � as a vector:

' =


0 0.04 0.05 0 0
0 1 0 0 0
0 0 0 0.08 0
0 0 0 0 0.04
0 0 0 0 1


, � =


0.09
1

0.08
0.04
1


,

where we choose an (arbitrary) nonzero rate of 1 for the sink states, which is needed
later on (for applying the uniformization technique). Thus, we have that

' − diag(�) =


−0.09 0.04 0.05 0 0
0 0 0 0 0
0 0 −0.08 0.08 0
0 0 0 −0.04 0.04
0 0 0 0 0


,

which leads to the transient distribution PB� (10) = [0.41, 0.26, 0.21, 0.10, 0.02]. This
transient distribution tells us that after 10 time units, the CTMC is in state SI with
probability 0.41, in state SR with probability 0.26, and so on.

200 11 Foundations of CTMCs

The matrix exponent involved in the transient distribution can be computed using a
Taylor-Maclaurin expansion such that

PB (C) = B · 4 ('−diag(�)) ·C = B ·
∞∑
8=0

((' − diag(�)) · C)8
8!

. (11.1)

However, as discussed inmore detail by [ML03; Ste94], using this expansion is impractical
for two main reasons:
1. It is difficult to find a proper criterion for truncating the infinite summation;
2. Numerical methods can suffer from instability due to the non-sparsity of (' −

diag(�)) · C and the presence of both positive and negative entries.
Thus, most practical techniques for computing transient distributions resort to a tech-
nique called uniformization [BHHK03], which we describe in more detail in Def. 11.11.

Paths | An infinitepath path in the CTMC C = ((, B� , ', !) is an alternating sequence
c B B0C0B1C1B2 · · · of states and residence times, where '(B8 , B8+1) > 0 for all 8 ∈ N.
Similarly, a finite CTMC path is an alternating sequence c B B0C0B1C1 · · · Cℓ−1Bℓ such that
'(B8 , B8+1) > 0 for all 8 < ℓ and Bℓ is absorbing, i.e., '(Bℓ , B′) = 0 for all B′ ∈ (. The set of
all (finite and infinite) paths in the CTMC C is denoted by ΠC = (× (R≥0 × ()∗. As for
MDPs, we denote the set of all (in)finite CTMC paths starting in a state B ∈ (by ΠC (B).

Intuitively, the finite path B03B14B2 means we stayed exactly 3 time units in B0, then
transitioned to B1, where we stayed 4 time units before moving to B2. For a path c =

B0C0B1C1 · · · , let c8 = B8 denote the (8 + 1)th state of c , and X8 (c) = C8 the time spent in B8 .
Furthermore, the CTMC state occupied at time C ∈ R≥0 is denoted by c (C) ∈ (.

Example 11.4 (Path for epidemic CTMC) Consider the finite CTMC path c =

B3B′4B′′. For this path, we have c0 = B , X0(c) = 3, c1 = B′, and X1(c) = 4. Similarly,
we find that the state occupied at time 6.2 is c (6.2) = B′.

Alternative view | An alternative (and equivalent; see [Kat16]) view of CTMCs is
to combine the exit rates � : (→ Q≥0 with a transition matrix Δ : (→ Distr((), which
is defined such that Δ(B, B′) = ' (B,B′)

� (B) for all B, B′ ∈ (. For the absorbing states, the exit
rate � (B) is zero, and we also set Δ(B, B′) = 0 for all B′ ∈ (. For consistency, we primarily
represent CTMCs by their transition rate function ' (and not by their exit rates � and
transition matrix Δ).

Probability measure | We can define a probability measure over infinite timed paths
by cylinder sets [Kat16]. Here, we only sketch the construction while referring to, for
example, [BHHK03] for formal details. The main idea is to define cylinder sets over
infinite paths, which is similar yet more complex than the construction for DTMCs
because we need to consider the residence times in states along a path. As such, let
B0�0B1�1 · · · �ℓ−1Bℓ be an (interval) path fragment, where for all 9 = 0, . . . , ℓ−1, � 9 = [0 9 , 1 9]
is an interval with 0 9 ≤ 1 9 , and 0 9 , 1 9 ∈ R≥0. For this interval path fragment, we define
the (interval) cylinder set as the set of all CTMCs paths that have B0C0B1C1 · · · Cℓ−1Bℓ as a
prefix, where each C 9 ∈ � 9 . Doing so, we can define theprobability

measure
probability measure PrC on paths

in the CTMC C (with initial distribution B�).

11

11.3 Verifying CTMCs 201

Fault trees | CTMCs are closely related to (dynamic) fault treefault trees, which are a common
modeling formalism in reliability engineering [RS15]. Fault trees are widely used to
predict how component faults lead to system failure in safety and economically critical
assets [RRBS19]. A fault tree is a directed acyclic graph, whose leaves are basic events
that represent component faults, and whose root is a top event related to system failure.
The basic and top events are connected through logical gates that represent failure
propagation. Fault trees can be represented as a CTMC, and thus, techniques for
analyzing CTMCs can also be applied to fault trees. We refer to [Vol22] for a more
comprehensive introduction to (dynamic) fault trees.

Continuous-time MDPs | CTMCs can be extended with nondeterministic action
choices, resulting in a continuous-time Markov decision process (CTMDP) [Kat16; GH09;
BHKH05]. Schedulers for CTMDPs not only decide which action to play based on the
states previously visited but also on the elapsed time in every state [NSK09; Mil68]. Thus,
a CTMDP has uncountably many deterministic schedulers (compared to countably many
for MDPs; see Chapter 3 for details), and existing algorithms resort to discretization to
obtain n-optimal schedulers in practice [Kat16; BFKK+13]. We do not study CTMDPs in
this thesis, and we refer to the references above for details.

11.3 Verifying CTMCs
Over the past decades, efficient verification algorithms have been developed for the
analysis of CTMCs [BHHK03; ASSB00; KKNP01]. In this section, we provide a brief
introduction to specifications for CTMCs and computing measures of interest.

11.3.1 Continuous stochastic logic
continuous
stochastic
logic

Continuous stochastic logic (CSL) is a branching-time temporal logic that is commonly
used for specifying CTMC specifications. The logic was developed by [ASSB00] and
later extended with a time-bounded until operator by [BHHK03]. While we primarily
focus on measures of reachability and reward in this thesis, we still present the syntax
of continuous stochastic logic (CSL), as taken from [BHHK03], for completeness.

Definition 11.5 (Syntax of CSL) Let �% be a set of atomic propositions. A CSL
formula over �% is built using the following grammar:

ΦFTrue | 0 | ¬Φ | Φ ∧ Φ | L⊳_ (Φ) | P⊳_ (i)
i F ©� Φ | ΦU� Φ,

where 0 ∈ �% is an atomic proposition, ⊳ ∈ {<, ≤, ≥, >} is a comparison operator,
_ ∈ [0, 1] is a threshold probability, and � ⊆ R≥0 is a nonempty interval.

As for probabilistic computation tree logic (PCTL) introduced in Def. 3.14, Φ is called
a state

and path
formula

state formula and i a path formula. The symbols in the Def. 11.5 are defined as follows.
First, L⊳_ (Φ) holds if the steady-state (also called long-run) probability of occupying
a state that satisfies the state formula Φ meets the condition ⊳_. Analogous to the
probabilistic operator in PCTL, P⊳_ (i) holds if the probability measure of the paths
satisfying the path formula i meets the condition ⊳_. The path formula ©�Φ holds if a

202 11 Foundations of CTMCs

transition to a state satisfying Φ is made within the interval � . Finally, the path formula
ΦU� Φ′ holds if Φ′ is satisfied at some time in the interval � and Φ holds at all times
before that.

Remark 11.6 (Omitting labeling function) For simplicity, we often define state
formulae directly over CTMC states B ∈ (instead of over atomic propositions
0 ∈ �% . In such a case, we implicitly assume that the states and atomic propositions
coincide and that the labeling function ! is defined such that !(B) = {B} for all B ∈ (.

Example 11.7 (CSL formula for epidemic CTMC) For the CTMC in Fig. 11.2,
we can consider the CSL state formula P≥0.9(True U[0,10] {SR, RR}), which is satis-
fied if, starting from the initial state SI, the probability of reaching a state in which
the disease has become extinct (namely, states SR and RR) within the first 10 time
units is at least 0.9.

Semantics | We consider the semantics of CSL as presented in [BHHK03]. We use the
common notation B |= Φ to denote that state B ∈ (satisfies the state formula Φ. Similarly,
we write c |= i to denote that CTMC path c satisfies the path formula i .

Definition 11.8 (Satisfaction of CSL) Let C = ((, B� , ', !) be a CTMC, B ∈ (be a
state, 0 ∈ �% be an atomic proposition, Φ, Φ′ be CSL state formulae, and i be a CSL
path formula. The satisfaction relation |= is defined for state formulae as

B |= 0 iff 0 ∈ !(B)
B |= ¬Φ iff B 6 |= Φ

B |= Φ ∧ Φ′ iff B |= Φ and B |= Φ′

B |= L⊳_ (Φ) iff lim
C→∞

PrC (c ∈ ΠC (B) : c (C) |= Φ) ⊳ _

B |= P⊳_ (i) iff PrC (c ∈ ΠC (B) : c |= i) ⊳ _.

Similarly, the satisfaction relation for a path c in C is defined as

c |= ©�Φ iff c1 |= Φ ∧ X0(c) ∈ �
c |= ΦU� Φ′ iff ∃C ∈ � .

(
c (C) |= Φ′ ∧ (∀C ′ ∈ [0, C) . c (C ′) |= Φ)

)
.

Derived operators | Much like for PCTL, we can derive more operators from the
syntax in Def. 11.5. First, we define the standard (untimed) next and until operators as

©Φ B © [0,∞)Φ and ΦUΦ′ B ΦU[0,∞) Φ′ .
The eventually operator ♦ and its step-bounded variant ♦� are then defined as

P⊳_ (♦Φ) B P⊳_ (True UΦ) and P⊳_ (♦�Φ) B P⊳_ (True U� Φ).
Similarly, the always operator 2 and its step-bounded variant 2� are defined as

P⊳_ (2Φ) B P⊲(1−_) (True U¬Φ) and P⊳_ (2≤�Φ) B P⊲(1−_) (True U≤� ¬Φ),
where ⊲ is the opposite comparison operator from ⊳, e.g., if ⊳ is ≤ then ⊲ is ≥.

11

11.3 Verifying CTMCs 203

11.3.2 Measures
In this thesis, we are primarily interested in quantitative aspects of CTMCs, without
fixing a threshold probability _ for the satisfaction of a formula upfront. While the
interpretation of CSL formulae is boolean (i.e., a formula is either satisfied or not), we
can also use the CSL syntax to express common measure

(for CTMC)
measures. In this section, we discuss

the measures that we use for CTMCs in this thesis.

Transient probabilities | Often, we wish to compute the probability of reaching a
subset of CTMC states within a given time interval. We express such transient (satisfac-
tion) probability in the following way.2

Definition 11.9 (Transient satisfaction probability) Let C = ((, B� , ', !) be a
CTMC, B ∈ (be a state, and i be a CSL path formula. The transient

probability
transient satisfaction

probabilities of formula i in state B is defined as

PrC (B |= i) B PrC (c ∈ ΠC (B) : c |= i) .

An unbounded transient reachability probability with respect to an initial state B ∈ (
and the target states () ⊆ (is a particular instance of Def. 11.9 with a path formula of
the form i = ♦() , i.e.,

Pr(B |= ♦()) .

Similarly, a step-bounded transient reachability probability with respect to an initial state
B ∈ (, the target states () ⊆ (and a time interval � ⊆ R≥0 is of the form Pr(B |= ♦�()).
Transient satisfaction probabilities for other path formulae are defined analogously.

Steady-state probabilities | In a very similar manner, we can define steady-state
(satisfaction) probability with respect to state formulae.

Definition 11.10 (Steady-state satisfaction probability) steady-state
probability

Let C = ((, B� , ', !)
be a CTMC, B ∈ (be a state, and Φ be a CSL state formula. The steady-state
satisfaction probabilities of formula Φ in state B is defined as

StC (B |= Φ) B lim
C→∞

PrC (c ∈ ΠC (B) : c (C) |= Φ) .

Intuitively, StC (B |= Φ) is the steady-state probability to be in a state satisfying the
state formula Φ, starting from state B ∈ (.

Expected reward | We may augment CTMCs with a reward structure (d,]), where
d : (→ R≥0 is a state-based reward function, and] : (× (→ R≥0 is a transition-based
reward function. For CTMCs, state rewards are obtained for the time during which a
state is visited, while transition rewards are obtained upon entering a state. For example,
consider again the example CTMC path c = B3B′4B′′ from Example 11.4. In this path,
a state reward of 3d (B) is obtained while being in state B and of 4d (B′) while being in
state B′. By contrast, a transition reward of] (B, B′) is obtained upon transitioning from
2The word transient refers the time interval � in the CSL path formula i for which the satisfaction

probability is defined.

204 11 Foundations of CTMCs

B to B′, and of] (B′, B′′) upon transitioning from B′ to B′′. While some of the developed
methods in this thesis are amenable toexpected

cumulative
reward

expected reward measures for CTMCs, we omit
them for simplicity and instead refer to [KNP06; DHK15] for details.

11.3.3 Algorithms
Mature and efficient algorithms have been developed for model checking CTMCs against
CSL formulae. Especially the seminal papers [ASSB00] and [BHHK03] have laid much
of the foundations for several popular CTMC model checking algorithms. Depending
on the CSL formula, model checking requires solving a linear equation system (for
unbounded until and the steady-state operator) or computing transient probabilities in
the CTMC (for time-bounded until formulae).

Uniformization | In practice, transient probabilities in CTMCs can be computed
using uniformization (also referred to as randomization), a technique first proposed by
Jensen in 1953 [Jen53]. The main idea is to transform the CTMC into a DTMC that
captures the transient behavior of the CTMC. More concretely, the uniformized DTMC
for a given CTMC is defined as follows.

Definition 11.11 (Uniformization) Let C = ((, B� , ', !) be a CTMC, and fix a
uniformization rate @ ∈ R>0 such that @ ≥ maxB∈(� (B). Theuniformiza-

tion
uniformized DTMC

D = ((, B� , %, !) has the same states (, initial rate B� and labeling function !, and the
transition function % : (→ Distr(() is defined for all B, B′ ∈ (as

% (B) (B′) =
{

� (B)
@
· Δ(B, B′) if B′ ≠ B

� (B)
@
· (Δ(B, B′) − 1) + 1 otherwise,

where � : (→ Q≥0 and Δ : (→ Distr(() are the exit rates and transition matrix for
the CTMC C.

Note that the uniformization rate @ must be at least the highest exit rate � (B) over all
states B ∈ (. Uniformization is possible for any CTMC and allows computing transient
probabilities for a CTMC by analyzing the uniformized DTMC instead. Specifically, the
transient distribution at time C for the initial state distribution B can be rewritten using
the transition function % of the uniformized DTMC as

PB (C) = B · 4 ('−diag(�)) ·C = B ·
∞∑
8=0

4−@ ·C
(@ · C)8
8!
· %8 . (11.2)

Observe that the term (@ ·C)8
8! decreases rapidly with 8 . Furthermore, we can compute the

required number of terms in Eq. (11.2) such that PB (C) is approximated with any desired
precision [BHHK03]. As a result, uniformization leads to numerically stable techniques
for computing transient probabilities and CSL model checking of CTMCs [KKNP01].
For a more comprehensive treatment of uniformization for CTMCs and the resulting
model checking algorithms, we refer to [GM84; DBB18; BHHK03].

Implementation in model checkers | These algorithms, and in particular the
uniformization technique, are implemented in probabilistic model checkers, such as

11

11.4 Parametric Continuous-Time Markov Chains 205

PRISM [KNP11] and Storm [HJKQ+22]. In this thesis, we especially use Storm to analyze
CTMCs. For a given CTMC and a CSL formula, these model checkers are able to verify
whether the formula is satisfied or not. Furthermore, these model checkers can compute
common measures, including the transient probabilities, steady-state probabilities, and
expected rewards discussed in Sect. 11.3.2. We omit further details about the algorithms
used by these model checkers, because the contributions of this thesis are independent
of these algorithms. Instead, we regard the model checker as an oracle that, given a CSL
formula or measure, provides a solution to the verification problem at hand.

11.4 Parametric Continuous-Time Markov Chains
Standard CTMC verification algorithms require that the transition rates are precisely
known; an assumption that is often unrealistic in practice [HKM08]. To this end, paramet-
ric CTMCs (pCTMCs) extend standard CTMC with transition rates given as polynomials
over parameters [HKM08; CCGK+18].

Let + be a set of parameters. The set of polynomials over parameters + with rational
coefficients is denoted by Q[+] .We formally define a pCTMC as follows.

Definition 11.12 (pCTMC) A (labeled) parametric
CTMC

pCTMC is a tuple C+ B ((, B� ,+ , ', !),
with a finite set (of states, an initial state distribution B� ∈ Distr((), an (ordered)
set of parameters + , a parametric transition rate function ' : (× (→ Q[+], and a
labeling function ! : (→ 2�% , where �% is a set of atomic propositions.

Observe that the difference with a standard CTMC is the rate function, which now
maps every pair of states B, B′ ∈ (to a polynomial over the set of parameters+ . Assuming
that the parameters + in Def. 11.12 are ordered will conveniently allow us to reason
over values of the parameters as vectors.

11.4.1 Parameter instantiation
Given a pCTMC, we can fix a value for each parameter E ∈ + . parameter

instanti-
ation

Assigning a value to the
parameters is modeled by an instantiation D : + → Q, which is a function that maps
parameters to concrete values. Using the fact that the parameters + = {E1, . . . , E=},
= ∈ N>0, are ordered, we will often denote an instantiation as the vector D ∈ Q |+ | .

Induced CTMC | Recall from Chapter 8 that applying the instantiation D to a poly-
nomial 6 ∈ Q[+] yields 6[D] ∈ Q, which is obtained by substituting every parameter
E ∈ + in 6 with D (E). Thus, applying an instantiation D to a pCTMC C+ yields an
induced CTMC C+ [D] B ((, B� ,+ , ' [D]), where ' [D] (B, B′) B '(B, B′) [D] for all B, B′ ∈ (.
Intuitively, the transition rate function ' [D] is obtained by assigning the value D (E) to
each parameter E ∈ + . For the induced CTMC, we can perform any of the CSL model
checking queries discussed in Sect. 11.3.

Well-defined instantiations | The transition rate function of a CTMC maps pairs
of states to nonnegative rational numbers. However, some instantiations may lead to
an induced CTMC with negative transition rates. To avoid such situations, we restrict
ourselves to instantiations that yield a valid transition rate function. We call the set of
such instantiations the parameter space VC+ for pCTMC C+ .

206 11 Foundations of CTMCs

SR SI II RI RR
_A _8 2_A _A

Figure 11.3: PCTMC for the SIR model with a population of two, where _8 and _A model
the infection and recovery rate, respectively.

Definition 11.13 (Parameter space) Theparameter
space

parameter spaceVC+ for a pCTMC C+ =

((, B� ,+ , ', !) is a subset of all instantiations D : + → Q defined as

VC+ =
{
D : + → Q : ' [D] (B, B′) ∈ Q>0 ∀B, B′ ∈ (

}
.

For any pCTMC C+ , we only consider instantiations D ∈ VC+ that belong to the
parameter spaceVC+ .

Example 11.14 (Instantiations for epidemic pCTMC) We continue our ex-
ample of the SIR epidemic model. A parametric version of this CTMC is shown in
Fig. 11.3, where we replaced the concrete transition rates by parameters _8 and _A ,
modeling the infection and recovery rate, respectively. Thus, the set of parameters
of this pCTMC is + = {_8 , _A }. Consider now the following two instantiations:

• The instantiation D : + → Q defined as D (_8) = 0.5 and D (_A) = 0.4 induces
precisely the (parameter-free) CTMC shown in Fig. 11.2. Observe that this
instantiation leads to transition rates that belong to Q≥0, i.e., all rates are
nonnegative rational numbers. Thus, this instantiation D is valid and belongs
to the parameter spaceVC+ .

• By contrast, the instantiation D′ : + → Q defined as D′ (_8) = −0.2 and D′ (_A) =
−0.1 does not lead to a well-defined transition rate (because negative rates are
now allowed), and thus, D′ ∉ VC+ .

11.4.2 Verifying pCTMCs
A standard problem for pCTMCs is to find all parameter instantiations D ∈ VC+ that
induce a CTMC C+ [D] that satisfies a given CSL specification. A similar query is to
determine whether there exists an instantiation D ∈ VC+ such that the induced CTMC
C+ [D] satisfies the specification. Such model checking queries are similar to those for
parametric Markov decision processes (pMDPs) as we discussed in Chapter 8, and for
which [JJK22; Jun20] provide more detailed treatments.

Verification of parametric CTMCs is investigated in [HKM08; CDPK+17]; however, the
resulting algorithms are generally restricted to a few parameters. In general, verifying
pCTMCs remains a challenging problem, which typically scales poorly with the number
of parameters. In the next chapter, we present a sampling-based verification method
that does not suffer from this limited scalability. Instead, our method assumes access to
a prior distribution over the parameter values of the pCTMC, which we use to obtain
verification results with statistical guarantees.

11

11.5 Challenges 207

Solution function | The intuition that every parameter instantiationD ∈ VC+ induces
a concrete CTMC provides a natural construct to lift measures from CTMC to pCTMC.
In particular, we can define a function, called the solution

function
solution function, that maps every

instantiation D ∈ VC+ to the value of a (fixed) measure on the induced CTMC C+ [D].
For example, the solution function for the transient satisfaction probability of a CSL
path formula i is formally defined as follows.

Definition 11.15 (Solution function for transient probability) Let
C+ = ((, B� ,+ , ', !) be a pCTMC with parameter space VC+ . The solution
function solC+i : VC+ → R for the transient satisfaction probability of a CSL path
formulae i on the pCTMC C+ is defined as

solC+i : D ↦→ PrC+ [D] (B� |= i) .

The solution function for the steady-state satisfaction probability of a CSL state
formula Φ is defined analogously:

Definition 11.16 (Solution function for steady-state probability) Let C+ =

((, B� ,+ , ', !) be a pCTMC with parameter space VC+ . The solution function
solC+Φ : VC+ → R for the steady-state satisfaction probability of a CSL state formulae
Φ on the pCTMC C+ is defined as

solC+Φ : D ↦→ StC (B� |= Φ) .

Again, the solution function for an expected reward measure can be defined analog-
ously, but we omit an explicit definition for brevity.

11.5 Challenges
Standard verification algorithms for CTMCs assume that the model dynamics, including
the initial state distribution, are precisely known. That is, given a CTMC (or a pCTMC
with a parameter instantiation) with an initial state distribution B� ∈ Distr((), we can
verify any of the CSL formulae or measures discussed in Sect. 11.3.

When dealing with CTMCs in realistic settings, however, the dynamics and/or initial
state are often subject to uncertainty. The verification of CTMCs subject to uncertainty,
such as the pCTMCs discussed in the previous section, is a significantly less developed
research area. In Chapters 12 and 13, we study two such settings for CTMCs with
uncertainty in either the transition rates or the initial state. To close this chapter, we
briefly introduce these settings and the respective research questions we consider.

Chapter 12: Uncertain transition rates | In Chapter 12, we study pCTMC with
uncertain transition rates. We model this setting as a pCTMC together with a prior
distribution over the parameter values that encodes uncertainty about the actual trans-
ition rates. Each sample of this prior yields a standard CTMC that we can analyze, e.g.,
by computing any of the measures discussed in Sect. 11.3. However, the outcome of
this analysis may be different for each sample from the prior. Thus, the main question
that we aim to answer is as follows: “How can we use the analysis outcomes for previous
samples to make predictions about the analysis outcome for yet another sample?”

208 11 Foundations of CTMCs

Chapter 13: Uncertain initial state | In Chapter 13, we study CTMCs where the
initial state is unknown and must instead be inferred from a sequence of previously
observed labels. This setting is motivated by applications such as runtime monitoring,
which involves analyzing an already running system without a static initial state. The
main question we consider is thus: “How can we make predictions about the CTMC,
conditioned on a sequence of previously observed labels (and their observation times)?”

Summary

î Continuous-time Markov chains (CTMCs) are stochastic processes subject
to random timing and are the continuous-time analog of DTMCs.

î Specifications for CTMCs are commonly expressed in continuous stochastic
logic (CSL).

î We can use the CSL syntax to define common measures of reachability and
reward for CTMCs.

î Parametric CTMCs extend CTMCs with parametric transition rates.
î Assigning a value to each of the parameters of a pCTMC is called an instan-

tiation and yields an induced CTMC.

12

209

12 CTMCs With Uncertain Rates
Summary | We study parametric CTMCs (pCTMCs) with a (possibly unknown)
prior distribution over the parameters. The prior encodes uncertainty about the actual
transition rates, while the parameters allow dependencies between transition rates.
Sampling the parameter values from the prior distribution yields a standard CTMC, for
which wemay compute relevant measures, such as reachability probabilities. We provide
a principled solution, based on a technique called scenario optimization, to the following
problem: From a finite set of parameter samples and a user-specified confidence level,
compute prediction regions on the reachability probabilities. The prediction regions
should (with high probability) contain the reachability probabilities of a CTMC induced
by any additional sample. To boost the scalability of the approach, we employ standard
abstraction techniques and adapt our methodology to support approximate reachability
probabilities. Experiments with various well-known benchmarks show the applicability
of the approach.

Origins | The contents of this chapter are based on:
[3] Badings, Jansen, Junges, Stoelinga and Volk (2022) ‘Sampling-Based Verification of

CTMCs with Uncertain Rates’. CAV.
Additional experimental results left out of this thesis can be found in [3, Appendix C].

Background | The reader is assumed to be familiar with (parametric) continuous-time
Markov chains (CTMCs) and their analysis, as discussed in Chapter 11.

12.1 Introduction
In Chapter 11, we have introduced continuous-timeMarkov chains (CTMCs) as stochastic
processes subject to random timing. Standard model checking algorithms for CTMCs
require that the transition rates are precisely known; an assumption that is often un-
realistic in practice [HKM08]. For example, consider again the SIR (susceptible-infected-
recovered) model from Fig. 11.2. This CTMC assumes fixed and known values for the
infection rate (denoted here as _8) and the recovery rate (_A). Suppose that we are
interested in the probability of the disease becoming extinct over time. The outcome of
this analysis for fixed values of _8 and _A may be a probability curve like in Fig. 12.1a,
where we plot the probability (y-axis) of reaching a target state that corresponds to
the epidemic becoming extinct against varying time horizons (x-axis).1 In fact, the
plot is obtained via a smooth interpolation of the results at finitely many horizons, as
depicted in Fig. 12.1b. However, what if the rates we used for this analysis turn out to
be inaccurate?
1For visual clarity, we plot the reachability probability between time 100 and C1, . . . , C# .

210 12 CTMCs With Uncertain Rates

100

150

200

0

0.2

0.4

0.6

0.8

1

Time (weeks)

Pr
ob
ab
ili
ty

(a) Curve for a single
CTMC with precise
transition rates.

100

150

200

Time (weeks)

(b) Point abstraction
of a curve for a
single CTMC.

C
1

C
2

Time (weeks)

(c) Curves for five
CTMCs with dif-
ferent rates.

C
1

C
2

Time (weeks)

High prob.
Low prob.

(d) Two prediction re-
gions with different
probabilities.

Figure 12.1: The probability of extinction in the SIR (140) model for horizons [100, C].

Parametric models | To acknowledge that the rates _8 and _A are, in fact, uncertain,
we may specify the model as the parametric CTMC (pCTMC) in Fig. 11.3. We can then
analyze this pCTMC for different values of _8 and _A , resulting in a set of curves as
in Fig. 12.1c. These individual curves, however, provide no guarantees about the curve
obtained from yet another infection and recovery rate. Furthermore, what if some
parameter values are more likely than others? In other words, how can we incorporate
prior knowledge about the parameter values into the analysis?

Prior on parameters | In this chapter, we consider a setting in which we have access
to a prior distribution over the transition rates of a CTMC, which is similar to assumptions
made in, e.g., [BS18; MMAG14]. These priors may result from asking different experts
which value they would assume for, e.g., the infection rate. The prior may also be the
result of Bayesian reasoning [WA19]. We capture the uncertainty in the rates by an
arbitrary and potentially unknown probability distribution over the parameter space of
the pCTMC. We call this model an uncertain parametric CTMC (upCTMC); see Sect. 12.2
for a formal definition. The distribution allows drawing independent and identically
distributed (i.i.d.) samples, each of which yields a (parameter-free) CTMC.

Overall goal | For the epidemic modeled as a pCTMC, we may, for example, assume
that the infection and recovery rates _8 and _A are both normally distributed. Each
time we sample a pair of parameters, we obtain a concrete CTMC for which we can
compute a probability curve as in Fig. 12.1c. Intuitively, we want to use these curves to
make a statement about the curve that we would obtain for yet another sample of the
parameters. More concretely, we aim to construct so-called prediction regions around
a set of probability curves, as those shown in Fig. 12.1d. Then, with high probability
and high confidence, sampling a set of transition rates should induce a probability
curve within this prediction region. In this chapter, we develop an efficient probably
approximately correct, or PAC-style, method that computes these prediction regions.

Outline | This chapter is structured as follows. In Sect. 12.2, we introduce uncertain
parametric CTMCs (upCTMCs) as the model that we study in this chapter, and we
formally define the problem of interest. In Sect. 12.3, we solve this problem assuming

12

12.2 CTMCs With Uncertain Rates 211

that we can verify the CTMCs obtained for the different parameter values exactly.
In Sect. 12.4, we consider a less restricted setting in which the verification result for
every parameter value is imprecise, i.e., only known to lie in a certain interval. We
discuss algorithmic improvements for computing verification results in Sect. 12.5, and
we evaluate our approach by performing numerical experiments in Sect. 12.6.

12.2 CTMCs With Uncertain Rates
Let us formalize the model that we consider in this chapter. We propose to extend
pCTMCs (as defined by Def. 11.12) with distributions over the parameter values. We
call the resulting model an uncertain parametric CTMC (upCTMC).

Definition 12.1 (upCTMC) An uncertain
parametric
CTMC

uncertain parametric CTMC (upCTMC) is a tuple
(C+ , P), where C+ = ((, B� ,+ , ', !) is a pCTMC and P is a probability distribution
over the parameter spaceVC+ of C+ .

In Def. 12.1, we implicitly assume a probability space (VC+ ,B(VC+), P), where the
sample space is the parameter spaceVC+ , the f-algebra is the Borel f-algebra B(VC+),
and P is the probability measure. For brevity, we omit the full probability space and
instead only refer to the distribution P over the parameter space.

Remark 12.2 (Probability measure P) The probability measure P used through-
out this chapter should not be confused with the probabilistic operator in continuous
stochastic logic (CSL), defined in Def. 11.5. In this chapter, P always denotes a prob-
ability measure over the parameter space of a pCTMC.

The semantics of a upCTMC are as follows. A upCTMC specifies a probability dis-
tribution over the parameter values of pCTMC C+ , whose domain is defined by the
parameter spaceVC+ . We denote a sample fromVC+ drawn according to P by D ∈ VC+ .
Recall from Sect. 11.4 that applying this instantiationD ∈ VC+ to the pCTMC induces the
CTMC denoted by C+ [D]. Thus, a upCTMC implicitly defines a probability distribution
over CTMCs with concrete transition rates.

Sampling from P | We make the following assumption on the distribution P, which
is analogous to Assumption 6.2 made in Chapter 6.

Assumption 12.3 (Distribution unknown) We merely assume i.i.d. sampling
access to the probability distribution P of a upCTMC, and that the Radon-Nikodym
derivative of P with respect to the Lebesgue measure exists. However, the distribu-
tion itself can be highly complex or even unknown.

The existence of the Radon-Nikodym derivative is a rather standard assumption in
probability theory [Dur10]. A consequence of this assumption is that the probability
of drawing two samples D,D′ ∈ VC+ according to the probability measure P that are
exactly the same,D = D′, is zero. This assumption is standard in the literature on scenario
optimization [CG18a; CCG21], which is the sample-based methodology that we use to
solve the problem we consider in this chapter.

212 12 CTMCs With Uncertain Rates

12.2.1 Measures and solution functions
Recall from Sect. 11.3 that measures for CTMCs can be specified in CSL. Furthermore,
recall from Sect. 11.4 that the satisfaction probability for a CSL path formulae i (or state
formula Φ) can be lifted to a pCTMC C+ using the solution function solC+i : VC+ → R (or
solC+Φ : VC+ → R). This solution function maps every parameter instantiation D ∈ VC+
to the satisfaction probability on the induced CTMC C+ [D].

Remark 12.4 (Notation for solution function) In Sect. 11.4, we denoted a solu-
tion function as solC+i or solC+Φ to emphasize that it is defined for a fixed pCTMC
C+ and for the satisfaction probability of a CSL path formula i or state formulae Φ.
For brevity, we simplify notation in this chapter and write a solution function as
sol : VC+ → R, thus making the pCTMC and CSL formula implicit.

In this chapter, we generalize the concept of a solution function to (ordered) sets of
measures. To this end, we introduce the notion of a vector-valued solution function.

Definition 12.5 (Vector-valued solution function) Let C+ = ((, B� ,+ , ', !) be a
pCTMC with parameter spaceVC+ . Avector-

valued
solution
function

vector-valued solution function sol : VC+ →
R< for the pCTMC C+ is a function that maps every instantiation D ∈ VC+ to a
value in R< , for some< ∈ N>0.

The dimension of a vector-valued solution function will be clear from the context and
is, thus, often omitted. Furthermore, a standard solution function is a special case of a
vector-valued solution function mapping to R1. Thus, we also drop the vector-valued and
simply refer to solution functions in this chapter. For brevity, we also refer to sol(D) ∈ R<
as the solution vector of instantiation D ∈ VC+ .

Example 12.6 (Solution function for epidemic model) Consider again the
point abstraction of a probability curve in Fig. 12.1b. This point abstraction consists
of six time points C1, . . . , C6 at which the probability of the disease becoming extinct
is computed. Thus, this setting can be modeled by the (vector-valued) solution
function sol : VC+ → R6, which is defined for all D ∈ VC+ as

sol(D) =
[
PrC+ [D] (B� |= ♦≤C1()), . . . , PrC+ [D] (B� |= ♦≤C6())

]>
,

where () ⊂ (are the states corresponding with the disease being extinct, and
C1, . . . , C6 ∈ R>0 are the six time points at which to compute the measure.

12.2.2 Problem statement
Let (C+ , P) be a upCTMC and let sol : VC+ → R< be a solution function modeling
< ∈ N>0 measures. We want to make predictions about the solution vector sol(D) for
a random instantiation D ∈ VC+ drawn according to P. Intuitively, we represent this
prediction as a prediction region, denoted by ', on the codomain R< of the solution
function sol, such as those shown in Fig. 12.1d. We consider only prediction regions
that are compact subsets of R< , yielding the following definition.

12

12.2 CTMCs With Uncertain Rates 213

Definition 12.7 (Prediction region) An <-dimensional prediction
region

prediction region ' is a
compact subset of R< , where< ∈ N ∪ {∞}.

Note that a prediction region can be infinite-dimensional, which we will use in Def. 12.10
to define prediction regions over time (as those shown in Fig. 12.1d).

We define the so-called containment probability of a prediction region ', which is the
probability that the solution vector sol(D) for a randomly sampled parameter D ∈ VC+
is contained in '.

Definition 12.8 (Containment probability) Let (C+ , P) be a upCTMCwith para-
meter spaceVC+ , let ' be a prediction region, and let sol : VC+ → R< be a solution
function. The containment

probability
containment probability PrVC+ (') is the probability that sol(D) is

contained in ' for D sampled according to P:

PrVC+ (') B P
{
D ∈ VC+ : sol(D) ∈ '

}
.

Sampling parameter values | Our goal is to compute a prediction region ' and
provide guarantees on the containment probability PrVC+ ('). We will achieve this using
a sampling-based approach. In particular, let U# = {D1, . . . , D# } be a set of # ∈ N>0

i.i.d. samples fromVC+ drawn according to P. This set of samples is an element from
the probability spaceV#

C+ =
>#

8=1VC+ equipped with the product probability measure
P# and the product f-algebra. We aim to use the set of samples U# = {D1, . . . , D# }
from P to obtain statistical guarantees on the containment probability, i.e., guarantees
that hold with a (user-specified) confidence level, denoted by V ∈ (0, 1). Formally, we
solve the following problem.

Problem 12.9 (Prediction region for upCTMC) Given a upCTMC (C+ , P), a
solution function sol : VC+ → R< , and a confidence level V ∈ (0, 1), compute
a (tight) prediction region ' and a (tight) lower bound ` ∈ (0, 1) on the containment
probability, such that

P#
{
{D1, . . . , D# } ∈ V#

C+ : PrVC+ (') ≥ `
}
≥ V,

where PrVC+ (') = P
{
D ∈ VC+ : sol(D) ∈ '

}
is the containment probability for the

solution function sol and the prediction region '.

To explore the intuition of Problem 12.9, let us neglect the confidence probability V
for a moment. The solution function sol implicitly encodes a set of measures expressed
as CSL formulae (see Remark 12.4). Thus, we aim to compute a prediction region '
on the values of these measures, such that when we draw a parameter value D ∈ VC+
according to P, the value sol(D) of these measures is contained in '.

Role of confidence probability V | Problem 12.9 asks for an algorithm that yields
a “correct” guarantee with at least the confidence probability V . That is, the algorithm
draws a set of # samples {D1, . . . , D# } ∈ V#

C+ according to the product probability
measure P# . Then, for at least a V probability of P# , the algorithm should produce a
prediction region ' for which the containment probability PrVC+ (') is lower bounded

214 12 CTMCs With Uncertain Rates

0 0
.2

0
.4

0
.6

0
.8

10

0.2

0.4

0.6

0.8

1

Probability at C1

Pr
ob
ab
ili
ty

at
C 2

High prob.
Low prob.

Figure 12.2: Prediction region for the epidemic CTMC, showing the extinction probabil-
ities from Fig. 12.1c at time points C1 and C2, together with two prediction
regions around these points.

by `. Naturally, we expect a trade-off between the size of the prediction region ' and the
lower bound ` on the containment probability. Two other important parameters are the
number of samples # and the confidence probability V . We now illustrate Problem 12.9
through an example, highlighting the role of these different parameters.

12.2.3 Illustrative example
We reinterpret the problem sketched in Fig. 12.1 (where we considered the extinction
probability of a disease over time) in the context of Problem 12.9. The solution function
for this example problem is analogous to Example 12.6, but then with more than six
time bounds. How can we solve Problem 12.9 for this example?

A change in perspective | Suppose that we are given the set {D1, . . . , D# } of# ∈ N>0

values for the parameters, drawn according to P. Each sample D8 leads to a solution
vector sol(D8), as shown in Fig. 12.1c (recall that each curve is, in fact, an interpolation
of finitely many points). To solve Problem 12.9, we want to compute a prediction region
that overapproximates this set of # solution vectors.

To explain how we achieve this, let us change the perspective and look at only the
solution vectors for two horizons, namely C1 and C2 (which are also indicated in Fig. 12.1c).
We represent the solution vectors for these two horizons as in Fig. 12.2, where each
point is a pair of probabilities that the disease becomes extinct before time C1 and before
C2. That is, each point in Fig. 12.2 is a vector for an instantiation D ∈ VC+ defined as[

PrC+ [D] (B� |= ♦≤C1()), PrC+ [D] (B� |= ♦≤C2())
]
∈ R2.

The boxes in Fig. 12.2 suggest how we can overapproximate the solution vector as a
rectangle. However, when we map this rectangle back to the perspective in Fig. 12.1, we
obtain a prediction region that is only defined at the time points at which the measure
is computed. Instead, we want to obtain a prediction region that contains the curves in
Fig. 12.1c for all time points C ∈ [100, 200]. In other words, we want a prediction region
defined as a set-valued function over time.

12

12.2 CTMCs With Uncertain Rates 215

Definition 12.10 (Prediction region over time) A prediction region ' ⊂ R<
over time is given by two curves 2, 2 : Q≥0 → R as the area in-between:

' = {(C,~) ∈ Q × R | 2 (C) ≤ ~ ≤ 2 (C)}.

Restricting the domain of C in Def. 12.10 to the rational numbers Q≥0 ensures that
CSL model checking problems over these time bounds are decidable [ASSB00]. We need
this restriction because our approach for solving Problem 12.9 is based on solving a set
of CSL model checking problems over the time bounds of a prediction region.

In practice, we exploit the monotonicity2 of the measure with respect to the time
bound. Thus, the functions 2, 2 in Def. 12.10 are obtained as two step functions. If desired,
we can smoothen the resulting prediction region by taking an upper and lower bound
on these step functions.

C
1

C
2

Time (weeks)

High prob.
Low prob.

Problem 12.9 solved | Using Def. 12.10, we lift the two pre-
diction regions in Fig. 12.2 to the prediction regions in Fig. 12.1d
(copied here for convenience), which are defined over the con-
tinuous time interval C ∈ [100, 200]. When looking closely at
Fig. 12.1d, one can indeed see the step functions that make up the
prediction regions. These prediction regions provide a solution
to Problem 12.9. For this specific example, using a confidence
level of V = 99% and considering # = 100 curves, we conclude
that ` = 79.4% for the red region and ` = 7.5% for the blue region.
For a higher confidence level of V = 99.9%, we would obtain slightly more conservative
bounds on the containment probability. This concludes our intuitive explanation of how
we solve Problem 12.9.

12.2.4 Our approach
To actually compute prediction regions, we use techniques from the scenario

approach
scenario approach

(also called scenario optimization), a data-driven methodology for solving stochastic
optimization problems [CG18a; CCG21]. Starting with a set of solution vectors # ∈ N>0,
denoted by {sol(D8)}#8=1, we construct a prediction region based on the solution to a
convex optimization problem. Our method can balance the size of the prediction region
with the containment probability, as illustrated by the two boxes in Fig. 12.1d.

Extensions | Our approach offers more than prediction regions on probability curves
as in Fig. 12.1. For example, we also allow for solution vectors that represent multiple
objectives, such as the reachability with respect to different goal states, expected rewards,
or even the probability mass of paths satisfying more complex temporal specifications.
In our experiments, we show that this multi-objective approach—also on probability
curves—yields much tighter bounds on the containment probability than an approach
that analyzes each objective independently. We can also produce prediction regions as
other shapes than boxes, as, for example, shown in Fig. 12.3.

2In this example, only the upper limit on the time bound is varied, so the resulting measure is monoton-
ically increasing with the time bound.

216 12 CTMCs With Uncertain Rates

250

300

350

400

0
0.2
0.4
0.6
0.8
1

Measure 1

M
ea
su
re

2
Figure 12.3: With our approach, we can also compute prediction regions of different

shapes, such as this Pareto front for two measures.

12.3 Precise Sampling-Based Prediction Regions
In this section, we use scenario optimization [CG08; CG18a] to compute a prediction
region that solves Problem 12.9. First, in Sect. 12.3.1, we describe how to compute a
prediction region using the solution vectors {sol(D8)}#8=1 for a given set of # ∈ N>0

parameter samples. In Sect. 12.3.2, we clarify how to compute a lower bound on the
containment probability with respect to this prediction region. In Sect. 12.3.3, we present
an algorithm based on those results that solves Problem 12.9.

12.3.1 Constructing prediction regions
For conciseness, we restrict ourselves to ' being a hyperrectangle in R< , with< the
dimension of the solution function sol, and briefly describe extensions in Remark 12.15
below. Thus, we can represent ' using two vectors G, G ∈ R< such that, using pointwise
inequalities, ' = {G ∈ R< : G ≤ G ≤ G}. An example of such a rectangular prediction
region is depicted earlier by Fig. 12.2.

Relaxation of solutions | As shown in Fig. 12.2, we do not require ' to contain all
solutions {sol(D8)}#8=1. Instead, we have two orthogonal goals: We aim to minimize the
size of ', while also minimizing the !1 distance (also known as Manhattan distance)
of the solutions {sol(D8)}#8=1 to '. We call the solutions that are not contained in '
relaxed. These goals define a multi-objective problem, which we solve by weighting the
two objectives using a fixed parameter d > 0, called the cost of relaxation, that is used
to scale the distance to '. Then, d → ∞ enforces sol(D8) ⊆ ' for all 8 = 1, . . . , # , as
in the outer box in Fig. 12.2, while for d → 0, ' is reduced to a point. Thus, the cost
of relaxation d is a tuning parameter that determines the size of the prediction region
' and hence the fraction of the solution vectors that is contained in ' (see [CG18b;
CCG21] for details).

Scenario optimization problem | We capture the problem described above in the
following convexscenario op-

timization
problem

scenario optimization problem L
d

U :

L
d

U : minimize
G∈R<, G∈R<,

b8 ∈R<≥0 ∀8=1,...,#

‖G − G ‖1 + d
=∑
8=1

‖b8 ‖1 (12.1a)

subject to G − b8 ≤ sol(D8) ≤ G + b8 ∀8 = 1, . . . , # . (12.1b)

12

12.3 Precise Sampling-Based Prediction Regions 217

M
ea
su
re

X1

X2

X3

X4

X5

'1
d > 1 '2

1
2 < d < 1 '3

1
4 < d < 1

2

0
sol(D1) = 0.3

sol(D2) = 1.0
sol(D3) = 1.5

sol(D4) = 2.1
sol(D5) = 2.65
sol(D6) = 3.2

Figure 12.4: The prediction region changes with the cost of relaxation d .

The decision variables G, G ∈ R< represent the lower and upper bound of the prediction
region, respectively. Furthermore, for every 8 = 1, . . . , # , the decision variable b8 ∈ R<≥0
is a slack variable representing the distance to '. The objective function in Eq. (12.1a)
minimizes the size of ' (by minimizing the sum of the width of the prediction region
in all dimensions) plus d times the distances of the sampled solutions to '. We denote
the (arguments of the) optimal solution to problem L

d

U for a given d by '★d , b★d , where
'★d = [G★

d
, G★d] for the rectangular case.

Proposition 12.11 A finite optimal solution '★d , b★d to L
d

U exists.

Proof. The solution vectors {sol(D8)}#8=1 are finite-valued by definition. Thus, the
constraints of problem L

d

U form a non-empty compact set on the decision variables
G, G, b . Minimizing a linear objective over a compact set always has a finite optimum,
and thus, a finite optimal solution to L

d

U exists. �

While an optimal solution to L
d

U exists, it may not be unique, as illustrated by the
following example.

Example 12.12 Fig. 12.4 shows a set of (1-dimensional) solutions for six sampled
parameter instantiations, labeled sol(D1), . . . , sol(D6), which we ordered without
loss of generality. The figure also shows three prediction regions, '1, '2, and '3,
which are obtained by solving Ld

U for different values of d . The values X1, . . . , X5 are
the distances between the solutions, as shown in Fig. 12.4.

First consider prediction region '1 = [sol(D1), sol(D6)] = [0.3, 3.2]. The corres-
ponding objective value Eq. (12.1a) is

‖G − G ‖ + d ·
∑

b8 = ‖3.2 − 0.3‖ = X1 + X2 + X3 + X4 + X5,

as b8 = 0 for all 8 = 1, . . . , 6. Similarly, for region '2 = [sol(D2), sol(D5)] = [1.0, 2.65],
where sol(D1) and sol(D6) are relaxed, the objective value is

‖G − G ‖ + d ·
∑

b8 = ‖2.65 − 1.0‖ + d (3.2 − 2.65) + d (1.0 − 0.3)
= X2 + X3 + X4 + d · X1 + d · X5.

218 12 CTMCs With Uncertain Rates

1
.76

1
.78

1
.8

1
.82

1.2

1.3

1.4

Expected #tokens cell 1
Ex

p.
#t
ok

en
sc

el
l2

d = 2.00 d = 0.40 d = 0.15

Figure 12.5: Prediction regions as boxes for different costs of relaxations d .

For d > 1, the objective value of '1 is smaller than that of '2, so solving L
d

U
yields the prediction region '1. By contrast, for d < 1 the opposite holds, so '2 is
optimal over '1. For exactly d = 1, the objective values of '1 and '2 are equal, so
the optimal solution to L

d

U is not unique. Similarly, for d < 1
2 , relaxing samples

sol(D1), sol(D2), sol(D5), and sol(D6) is cost-optimal, resulting in the prediction region
'3 = [sol(D3), sol(D4)] (and for d = 1

2 both '2 and '3 are optimal).

To ensure the uniqueness of optimal solutions, we make the following assumption.

Assumption 12.13 The optimal solution '★d , b★d to L
d

U is unique.

If the solution to Eq. (12.1) is not unique, we apply a suitable tie-break rule that selects
one solution of the optimal set (e.g., the solution with a minimum Euclidean norm,
see [CG08]). Doing so, we can always satisfy Assumption 12.13 in practice.

Properties of prediction regions | Let us explore the geometrical properties of
prediction regions obtained from solving problem L

d

U . Recall that the parameter d ,
called the cost of relaxation, is a tuning parameter that determines the size of the
prediction region '. This effect is illustrated by the following example.

Example 12.14 We consider the Kanban manufacturing system benchmark
from [CT96] with a Gaussian distribution over the parameters. In Fig. 12.5, we
present # = 25 solution vectors for two expected cost measures. We use these
solutions in problem L

d

U in Eq. (12.1) and solve for d = 2, 0.4, and 0.15, resulting in
the three prediction regions in Fig. 12.5. For d = 2, the prediction region contains
all vectors, while for a lower cost of relaxation d , more vectors are left outside.

Interestingly, any prediction region obtained as the optimal solution to problemL
d

U in
Eq. (12.1) has at least one sample exactly on its boundary. This property is also observed
in Fig. 12.5 and can be explained based on the objective function ‖G − G ‖1 + d

∑=
8=1 ‖b8 ‖1.

If, for a feasible solution G, G, b , there is no sample on the boundary of the box [G, G],
then we can reduce the size of the prediction region (thus decreasing the term ‖G − G ‖1)
without having to increase the term d

∑=
8=1 ‖b8 ‖1.

12

12.3 Precise Sampling-Based Prediction Regions 219

Remark 12.15 (Shape of prediction region) While problem L
d

U in Eq. (12.1)
yields a rectangular prediction region, we can also produce other shapes. We
may, e.g., construct a Pareto front as in Fig. 12.3, by adding additional affine con-
straints [BV14]. In fact, our only requirement is that the objective function is convex,
and the constraints are convex in the decision variables (the dependence of the
constraints on D may be arbitrary) [CCG21].

12.3.2 Bounding the containment probability
The previous section shows how we compute a prediction region based on convex
optimization. We now characterize a sound statistical lower bound on the containment
probability with respect to the prediction region given by the optimal solution to this
optimization problem. Toward that result, we introduce the so-called complexity of
a solution to problem L

d

U in Eq. (12.1), a concept used in [CCG21] that is related
to the compressibility of the solution vectors {sol(D8)}#8=1. Roughly, the idea of this
compressibility is that only some of the solution vectors are needed to retain the same
optimal solution to problem L

d

U (and thus the same prediction region).

Definition 12.16 (Complexity) For Ld

U with optimal solution '★d , b★d , consider a
subset of samplesW ⊆ U# and the associated problem L

d

W with optimal solution
'̃d , b̃d . The setW is called critical if

'̃d = '★d and
{
D8 ∈ U# : b★d,8 > 0

}
⊆ W .

The complexitycomplexity 2★d of '★d , b★d is the cardinality of the smallest critical set. For brevity,
we also call 2★d the complexity of Ld

U .

Intuitively, the complexity 2★d is the number of samples 8 = 1, . . . , # not contained in
the prediction region '★d (because for these samples, we have b★d,8 > 0), plus the minimum
number of samples needed on the boundary of the region to keep the solution unchanged
(that is, '̃d = '★d). We describe in Sect. 12.3.3 how we algorithmically determine (an
upper bound on) the complexity.

Example 12.17 In Fig. 12.5, the prediction region for d = 2 contains all solution
vectors, so b★2,8 = 0∀8 . Moreover, if we remove all but four solutions (the ones on the
boundary of the region), the optimal solution to problemL

d

U remains unchanged, so
the complexity is 2★2.0 = 0+4. Similarly, the complexity for d = 0.4 is 2★0.4 = 8+2 = 10
(8 solutions outside the region and 2 on the boundary).

Recall that Def. 12.8 defines the containment probability of a generic region '. Here,
we consider the containment probability PrVC+ ('

★
d) of the optimal to L

d

U , which is a
random variable in the product spaceV#

C+ with probability measure P# .
We adapt the following theorem from [CCG21], which gives a lower bound on the

containment probability PrVC+ ('
★
d) of an optimal solution to Ld

U for a predefined value
of d . This lower bound is correct with a user-defined confidence level of V ∈ (0, 1),
which we typically choose close to one (e.g., V = 0.99).

220 12 CTMCs With Uncertain Rates

Theorem 12.18 (Solution to Problem 12.9) LetU# be a set of # ∈ N>0 samples,
and let 2★ be the complexity of problem L

d

U . For any confidence level V ∈ (0, 1) and
any upper bound 3★ ≥ 2★, it holds that

P#
{
{D1, . . . , D# } ∈ V#

C+ : PrVC+
(
'★d

)
≥ [(3★)

}
≥ V, (12.2)

where '★d is the prediction region for Ld

U . Moreover, [: N → R≥0 is a function
defined as [(#) = 0, and otherwise, [(2) is the smallest positive real-valued solution
to the following polynomial in the C variable for a complexity of 2:(

#

2

)
C#−2 − 1 − V

2#

#−1∑
8=2

(
8

2

)
C8−2 − 1 − V

6#

4#∑
8=#+1

(
8

2

)
C8−2 = 0. (12.3)

Proof. The proof of Theorem 12.18 is based on [CCG21], which states that for a
complexity 2★d and for [(2★d) the smallest positive solution to Eq. (12.3), it holds that

P#
{
{D1, . . . , D# } ∈ V#

C+ : +
(
'★d) ≤ 1 − [(2★d)

}
≥ V, (12.4)

where + ('★d) is the so-called violation probability, which is defined as

+ ('★d) = P{D ∈ VC+ : sol(D) ∉ '★d }.

Observe that PrVC+ ('
★
d) ++ ('★d) = 1. Thus, we rewrite Eq. (12.4) as

P#
{
{D1, . . . , D# } ∈ V#

C+ : PrVC+ ('
★
d) ≥ [(2★d)

}
≥ V. (12.5)

It is shown by [GC22] that [(2) is monotonically decreasing in 2 [GC22], so for any
3★d ≥ 2★d , we have [(3★d) ≤ [(2★d). Hence, Eq. (12.5) also implies Eq. (12.2), which
concludes the proof. �

With a probability of at least V , Theorem 12.18 yields a correct lower bound on the
containment probability. That is, if we solve Ld

U for many more sets of # parameter
samples (recall that, as the samples are i.i.d., these sets are drawn according to the
product probability measure P#), the inequality in Eq. (12.2) is incorrect for at most a
1− V fraction of the cases. We plot the lower bound [(2) as a function of the complexity
2 = 0, . . . , # in Fig. 12.6, for different sample sizes # and confidence levels V . These
figures show that an increased complexity leads to a lower [, while increasing the sample
size leads to a tighter bound.

Example 12.19 We continue Example 12.17. Recall that the complexity for the
outer region in Fig. 12.5 is 2★2.0 = 4. With Theorem 12.18, we compute that, for a
confidence level of V = 0.9, the containment probability for this prediction region is
at least [= 0.615 (cf. Fig. 12.6a). For a stronger confidence level of V = 0.999, we
obtain a more conservative lower bound of [= 0.455.

12

12.3 Precise Sampling-Based Prediction Regions 221

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Complexity (2)

Lo
w
er

bo
un

d
([
)

V = 0.9
V = 0.99
V = 0.999

(a) Number of samples # = 25.
0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Complexity (2)

Lo
w
er

bo
un

d
([
)

V = 0.9
V = 0.99
V = 0.999

(b) Number of samples # = 100.

Figure 12.6: Lower bounds [on the containment probability as a function of the com-
plexity 2 , obtained from Theorem 12.18 for different confidences V .

(1) Sample
parameters

(2) Model
checker

(3) Scenario
LPs

(4) Complexity
Estimation

(5) Bounding
sat.prob.

1) Distribution P over VC+
2) Sample size #

1) pCTMC C+
2) Solution function sol

Costs of relaxation
d1, d2, . . . , d:

Confidence level V

U#

sol(D8)
∀8 = 1, . . . , # '★d: , b

★
d:

∀d
sol(D8) ∀8

3★d ≥ 2★d ∀d

Lower bounds
[(3★d) ∀d

Prediction regions '★d ∀d

Figure 12.7: Overview of our approach for solving the problem statement.

12.3.3 Algorithm for computing prediction regions
We combine the previous results in the algorithm outlined in Fig. 12.7. Our algorithm
produces a set of : ∈ N>0 prediction regions as in Fig. 12.5 and their associated lower
bounds. To strictly solve the problem statement (which asks for a single prediction
region), one can set : = 1 in the exposition below. We first outline the complete
procedure before describing steps 3–5 in more detail.

Recall that Problem 12.9 assumes that we are given a upCTMC (C+ , P), a solution
function sol : VC+ → R< , and a confidence level V ∈ (0, 1). As preprocessing steps, we
first sample a setU# of # parameter values (step 1 in Fig. 12.7). In step 2, we feed the
given pCTMC C+ and the solution function to a model checking algorithm that computes
the solution vector sol(D) for each D ∈ U# , yielding the set of solutions {sol(D8)}#8=1
(step 2). In step 3, we use the solution vectors {sol(D8)}#8=1 in the scenario problem L

d

U
in Eq. (12.1), which we solve for : predefined values d1, . . . , d: , yielding : prediction
regions '★d1 , . . . '

★
d:

. Step 4 is to compute an upper bound 3★d on the complexity 2★d for all
values of d . Finally, in step 5, we use Theorem 12.18 for a given confidence V to compute
the lower bound on the containment probability [(3★d) of each '★d . Using Def. 12.10, we
can postprocess this region to a prediction region over the probability curves.

222 12 CTMCs With Uncertain Rates

Step (3): Choosing values for d | Example 12.12 shows that relaxation of additional
solution vectors (and thus a change in the prediction region) only occurs at critical
values of d = 1

#
, for # ∈ N>0. In our experiments in Sect. 12.6, we will use d = 1

#+0.5
for ±10 values of # ∈ N>0 to obtain gradients of prediction regions.

Step (4): Upper bounding the complexity | Computing the complexity 2★d is a
combinatorial problem in general [GC22], because we must consider the removal of
all combinations of the solutions on the boundary of the prediction region '★d . In
practice, we compute an upper bound 3★d ≥ 2★d on the complexity via a greedy algorithm.
Specifically, we iteratively solve Ld

U in Eq. (12.1) with one more sample on the boundary
removed. If the optimal solution is unchanged, we conclude that this sample does not
contribute to the complexity. If the optimal solution is changed, we put the sample back
and proceed by removing a different sample. This greedy algorithm terminates when
we have tried removing all solutions on the boundary.

Step (5): Lower bounding the containment probability | Theorem 12.18 charac-
terizes a computable function �(3★, # , V) that returns zero for 3★ = # (i.e., all samples
are critical), and otherwise uses the polynomial Eq. (12.3) to obtain [, which we solve
with an approximate root finding method in practice (see [GC22] for details on how
to ensure that we find the smallest root). For every upper bound on the complexity
3★ and any requested confidence, we obtain the lower bound [= �(3★, # , V) for the
containment probability with respect to the prediction region '★d .

12.4 Imprecise Sampling-Based Prediction Regions
Thus far, we have solved Problem 12.9 under the assumption that we are able to compute
the solution vectors precisely (up to numerics). For some models, however, computing
precise solutions is expensive or even practically infeasible. In such a case, we may
choose to compute an approximation, given as an interval on each entry of the solution
function. In this section, we deal with such imprecise solutions.

Setting | An imprecise solution is described by the lower bound sol− (D) ∈ R< and
upper bound sol+(D) ∈ R< , such that sol− (D) ≤ sol(D) ≤ sol+(D) holds with pointwise
inequalities. Our goal is to compute a prediction region ' and a (high-confidence) lower
bound ` such that PrVC+ (') ≥ `, i.e., a lower bound on the probability that any precise
solution sol(D) is contained in '. However, we must now compute ' and PrVC+ (') from
the imprecise solutions sol− and sol+. Thus, we aim to provide a guarantee with respect
to the precise solution sol(D), based on imprecise solutions.

Challenge | Intuitively, if we increase the (unknown) prediction region '★ from
problem L

d

U (for the unknown precise solutions) while also overapproximating the
complexity of Ld

U , we obtain sound bounds. We formalize this idea as follows.

Lemma 12.20 (Imprecise solutions) Let '★d be the prediction region and 2★d be
the complexity that result from solving L

d

U for the precise (unknown) solutions
{sol(D8)}#8=1. Given a set ' ∈ R# and 3 ∈ N, for any confidence level V ∈ (0, 1), the
following implication holds:

12

12.4 Imprecise Sampling-Based Prediction Regions 223

'★d ⊆ ' and 2★d ≤ 3 =⇒ P#
{
{D1, . . . , D# } ∈ V#

C+ : PrVC+
(
'
)
≥ [(3)

}
≥ V,

where [(=) = 0, and otherwise, [(3) is the smallest positive real-valued solution to
the polynomial equality in Eq. (12.3).

Proof. Recall from the proof of Theorem 12.18 that for [(2★d) the solution to Eq. (12.3),
where 2★d is the true complexity of problem L

d

U , it holds that

P#
{
{D1, . . . , D# } ∈ V#

C+ : PrVC+
(
'★d

)
≥ [(2★d)

}
≥ V. (12.6)

Observe that for any two sets '★d ⊆ ', we have PrVC+
(
'
)
≥ PrVC+

(
'★d

)
. Moreover,

recall that [(2) is monotonically decreasing in 2 (as also observed visually from
Fig. 12.6), and thus, the condition 2★d ≤ 3 implies that [(3) ≤ [(2★d). Hence, under the
proposed conditions, we rewrite Eq. (12.6) as the right-hand side of the implication in
Lemma 12.20, which concludes the proof. �

What is left is to compute the appropriate ' and 3 in Lemma 12.20, which we will
deal with in Sects. 12.4.1 and 12.4.3, respectively. As we will see, in contrast to Sect. 12.3,
these results do not carry over to non-rectangular prediction regions. Thus, we will
exclusively consider rectangular regions in the remainder of this section.

12.4.1 Prediction regions on imprecise solutions
In this section, we show how to compute ' ⊇ '★d , satisfying the first term in the premise
of Lemma 12.20. We construct a conservative box around the imprecise solutions as
in Fig. 12.8, containing both sol− (D) and sol+(D). We compute this box by solving the
following problemG

d

U as a modified version of Ld

U in Eq. (12.1):

G
d

U : minimize
G∈R<, G∈R<,

b8 ∈R<≥0 ∀8=1,...,#

‖G − G ‖1 + d
=∑
8=1

‖b8 ‖1 (12.7a)

subject to G − b8 ≤ sol− (D8) ∀8 = 1, . . . , # (12.7b)
sol+(D8) ≤ G + b8 ∀8 = 1, . . . , # . (12.7c)

We denote the (arguments of the) optimal solution ofGd

U by [G ′
d
, G ′d], b ′d . For comparison,

recall that the optimal solution to Ld

U is written as [G★
d
, G★d], b★d .3 If a sample D8 ∈ VC+ in

problemG
d

U is relaxed (i.e., has a non-zero b8), part of the set [sol− (D8), sol+(D8)] is not
contained in the prediction region. The following result relates Ld

U andGd

U , showing
that we can use [G ′

d
, G ′d] as ' in Lemma 12.20.

Theorem 12.21 (Solving Problem 12.9 with imprecise solutions) Let the cost
of relaxation d > 0 and the sample set U# = {D1, . . . , D# } be given. For the
prediction region [G ′

d
, G ′d] as the optimal solution to problem G

d

U , it holds that
[G★

d
, G★d] ⊆ [G ′d , G

′
d], with [G★

d
, G★d] the optimal solution to L

d

U .

3We write [G★
d
, G★d] and [G ′d , G

′
d], because the results in Sect. 12.4 apply only to rectangular regions.

224 12 CTMCs With Uncertain Rates

0 0
.2

0
.4

0
.6

0
.8

1
0

0.2

0.4

0.6

0.8

1

Reliability (C1)

Ex
pe
ct
ed

co
st
(C 1
) Imprecise (2+d = 3)

Precise (2★d = 4)

•

•

•
•

•

•

•

1

2

34
5

6

7

Figure 12.8: Complexity of imprecise solution versus that of the precise solution.

Since the proof of Theorem 12.21 is nontrivial, we first explain the result intuitively
and thereafter provide the formal proof in Sect. 12.4.2. In particular, the entries b8 from
the optimization problemsGd

U andLd

U are incomparable, as are their objective functions.
Instead, Theorem 12.21 relies on two observations:
1. Due to the use of the 1-norm, the optimization problemG

d

U can be decomposed
into # smaller problems, whose results combine into a solution to the original
problem. This allows us to consider individual dimensions of the solution vectors.

2. The solution vectors that are relaxed depend on the value of d and on their relative
order, but not on the precise position within that order, which is also illustrated
by Example 12.12. In combination with the observation from Example 12.12 that
the outermost samples are relaxed at the (relatively) highest d , we can provide
conservative guarantees on which samples are (or are surely not) relaxed.

12.4.2 *Proof of Theorem 12.21
*Section

with details
that can be

skipped
safely

The one-dimensional case | Let us first consider the case for solution vectors in R1,
i.e., those modeling one measure. Recall from Example 12.12 that for precise solutions
in one dimension, the outermost two samples (labeled A and F) are relaxed under the
(unique) optimal solution if d < 1, samples B and E if d < 1

2 , etc. Denote by sol− (D)A ∈ R
and sol+(D)A ∈ R the A th entries of the respective imprecise solution vectors for sample
D ∈ VC+ . In formalizing the relationship between the value of d and whether a sample
is relaxed, we state the following definition:

Definition 12.22 (Counting samples) Let A ∈ {1, . . . ,<}, where< is the dimen-
sion of the solution vector sol(D) ∈ R< . For any (sol− (D8), sol+(D8)), we define
num≥+ (D8)A ∈ {1, . . . , # } and num≤− (D8)A ∈ {1, . . . , # } as the number of samples
whose upper bound is at least sol+(D8) (or at most sol− (D8)), when projected to
dimension A :

num≥+ (D8)A =
��{D 9 ∈ VC+ : sol+(D 9)A ≥ sol+(D8)A }

��
num≤− (D8)A =

��{D 9 ∈ VC+ : sol− (D 9)A ≤ sol− (D8)A }
��.

The intuition of Def. 12.22 is illustrated by Fig. 12.9, which shows the values of
num≤+ (D8) for the case where A = 1 (thus, the subscripts A are omitted).

12

12.4 Imprecise Sampling-Based Prediction Regions 225

solC++ (D1)
num≥

+ (D1) = 1
solC++ (D2)

num≥
+ (D2) = 2 solC++ (D3)

num≥
+ (D3) = 3solC++ (D4)

num≥
+ (D4) = 4 solC++ (D5)

num≥
+ (D5) = 5solC++ (D6)

num≥
+ (D6) = 6

Ḡ ′d

...

Figure 12.9: The upper bounds of five imprecise solutions and their values of num≥+ (D) .

The following lemma then characterizes the relaxed solutions:

Lemma 12.23 (Containment of imprecise solution) An imprecise solution
(sol− (D), sol+(D)), D ∈ VC+ is not contained in prediction region [G ′

d
, G ′d] ofG

d

U ,
projected to dimension A ∈ {1, . . . ,<} of the solution function, if

d < min
{
num≥+ (D)A , num≤− (D)A

}−1
. (12.8)

Note that, for precise solutions, there is no distinction between sol− (D8) and sol+(D8).
Nevertheless, Lemma 12.23 still applies.

Proof (Proof of Theorem 12.21; part I). We prove the theorem by contradiction for the
1-dimensional case, and we generalize afterward. In a single dimension, [G★

d
, G★d] *

[G ′
d
, G ′d] requires that either G★d < G ′

d
or G★d > G ′d . First consider the upper bounds G ′d

and G★d , which we can make explicit using Lemma 12.23:

G ′d = max
{
sol+(D), D ∈ VC+ : num≥+ (D) > d−1

}
G★d = max

{
sol(D), D ∈ VC+ : num≥ (D) > d−1

}
.

For G★d > G ′d to hold, the maximum num≥ (D) > d−1 (i.e., the highest precise solution
for which there are more than d−1 solutions at least as high) must exceed num≥+ (D) >
d−1 (the highest imprecise upper bound solution for which there are more than d−1
imprecise upper bound solutions at least as high). This can only be true if the number
of samples for which sol(D) > G ′ is higher than the number for which sol+(D) > G ′.
However, by construction, sol(D) ≤ sol+, so this is impossible, and thus, it holds that
G★d ≤ G ′d . While omitted for brevity, the proof that the lower bound G★

d
≥ G ′d follows

analogous to the upper bound. �

The multi-dimensional case | We now generalize the results above to the multi-
dimensional case, i.e., with multiple measures.

226 12 CTMCs With Uncertain Rates

Lemma 12.24 ProblemG
d

U can be decomposed into an independent problem for
every of the< ∈ N>0 dimensions of the solution function sol : VC+ → R< .

Lemma 12.24 holds because the objective Eq. (12.1a) is additive and all constraints for
all measures Eq. (12.1b) are independent. Thus, we can equivalently solve problem L

d

U
for all< measures modeled by the solution function separately.

Proof (Proof of Theorem 12.21; part II). We now generalize the result to multiple di-
mensions. Lemma 12.24 states that for rectangular prediction regions, problems Ld

U
andGd

U can be solved for each dimension separately. As such, we obtain an element-
wise inequality G ′

d
≤ G★

d
≤ G★d ≤ G★d , which also implies that [G★

d
, G★d] ⊆ [G ′d , G

′
d], so

the claim in follows. �

12.4.3 Computing the complexity
To satisfy the second term of the premise in Lemma 12.20, we compute an upper bound
on the complexity. We first present a negative result. Let the complexity 2′d of problem
G

d

U be defined analogous to Def. 12.16, but with [G ′
d
, G ′d] as the region.

Lemma 12.25 In general, 2★d ≤ 2′d does not hold.

Proof. In Fig. 12.8, the smallest critical set for the imprecise solutions are those labeled
{1, 2, 7}, while this set is {1, 3, 5, 7} under precise solutions, so 2★d > 2′d . �

Thus, we cannot upper bound the complexity directly from the result to G
d

U . We
can, however, determine the samples that are certainly not in any critical set (recall
Def. 12.16). Intuitively, a sample is surely noncritical if its (imprecise) solution is strictly
within the prediction region and does not overlap with any solution on the region’s
boundary. In Fig. 12.9, sample D6 is surely noncritical, but sample D5 is not (whether D5
is critical depends on its precise solution). Formally, let X' be the boundary (i.e., the set
of all limit points of ', as we defined in the preliminaries in Sect. 2.1) of region [G ′

d
, G ′d],

and let B be the set of samples whose solutions overlap with X', which is

B = {D ∈ U# : [sol− (D), sol+(D)] ∩ X' ≠ ∅}.

We then define a surely noncritical sample as follows.

Definition 12.26 (Surely noncritical samples) For a region [G ′
d
, G ′d], let I ⊂

[G ′
d
, G ′d] be the rectangle of largest volume, such that I ∩ [sol− (D), sol+(D)] = ∅ for

any D ∈ B. A sample D8 ∈ VC+ is surely noncritical if [sol− (D8), sol+(D8)] ⊆ I. The
set of all surely noncritical samples with respect to the (unknown) prediction region
[G★

d
, G★d] is denoted by X ⊂ U# .

Before we state the last technical result of this section, we provide the following
useful lemma about surely noncritical samples.

Lemma 12.27 Any surely noncritical sample cannot be in the (smallest) critical
set, defined in Def. 12.16.

12

12.5 Batch Verification for CTMCs 227

Proof. Recall from Def. 12.16 that a sample may (potentially) be critical if it is either
outside or on the boundary of the prediction region [G★

d
, G★d]. While the boundary

of the prediction region [G★
d
, G★] is unknown, it cannot be smaller than the inner

rectangle I defined in Def. 12.26. By construction, any surely noncritical sample is a
subset of this set I. Hence, any surely noncritical sample cannot be in the (smallest)
critical set, and the claim follows. �

As a worst case, any sample not surely noncritical can be in the smallest critical set,
leading to the following bound on the complexity as required by Lemma 12.20.

Theorem 12.28 Let X be the set of surely noncritical samples. Then, it holds that
2★d ≤ |U# \ X|.

Proof. The proof follows almost directly from Lemma 12.27. The complexity is the
cardinality of the smallest critical set, which cannot contain any surely noncritical
sample, as stated by Lemma 12.27. Hence, it follows that # − |- | = |U# \ X|, where
X is the set of surely noncritical samples, which concludes the proof. �

For imprecise solutions, the bound inTheorem 12.28 is conservative but can potentially
be improved, as discussed in the following.

12.4.4 Solution refinement scheme
Practical model checking algorithms for CTMCs can compute upper and lower bounds
on solutions with an arbitrary precision. However, the higher the requested precision,
the higher the computation time. Thus, there is a trade-off between the tightness of the
bounds on the solution and the computation time. This trade-off naturally leads to a
refinement scheme for the imprecise solutions used to compute prediction regions.

Refining solutions | If the prediction region for a given set of imprecise solution
vectors leads to an unsatisfactory solution to Problem 12.9, we refine these imprecise
solutions by increasing the requested precision in the model checking algorithm. By
doing so, we obtain imprecise solutions that are closer to their true (but unknown) value,
which leads to improved prediction regions and upper bound on the complexity, which
in turn improves the computed bound on the containment probability.

Refinement scheme | Specifically, we propose the following rule for refining solu-
tions. After solvingGd

U for a given set of imprecise solutions, we refine the solutions
on the boundary of the obtained prediction region. We then resolve problemG

d

U , thus
adding a loop back from step (4) to (2) in Fig. 12.7. In our experiments, we show that
with this refinement scheme, we iteratively improve our upper bound 3 ≥ 2★d and the
smallest overapproximation ' ⊇ '★d of the prediction region.

12.5 Batch Verification for CTMCs
One practical bottleneck in our method is to obtain the necessary number of solution
vectors {sol(D8)}#8=1 by model checking. The following improvements, while mild, are
essential in our implementation and, therefore, deserve a brief discussion.

In general, computing sol(D) via model checking consists of two parts. First, the

228 12 CTMCs With Uncertain Rates

high-level representation of the upCTMC—given in Prism [KNP11], in JANI [BDHH+17],
or as a dynamicfault tree fault tree4—is translated into a concrete CTMC C+ [D]. Then, from C+ [D]
we construct sol(D) using off-the-shelf algorithms [BHHK03]. We adapt the pipeline by
tailoring the translation and the approximate analysis as outlined below.

Our implementation supports two methods for building the concrete CTMC for a
parameter sample: (1) by first instantiating the valuation in the specification and then
building the resulting concrete CTMC, or (2) by first building the pCTMC C+ (only once)
and then instantiating it for each parameter sample to obtain the concrete CTMC C+ [D].
Which method is faster depends on the specific model (we only report results for the
fastest method in Sect. 12.6 for brevity).

Partial models | To accelerate the time-consuming computation of solution vec-
tors for large models, it is natural to abstract the models into smaller models that can
be analyzed faster. Similar to ideas used for dynamic fault trees [VJK18], infinite CT-
MCs [RNBM+22], and continuous-timeMarkov decision processes (CTMDPs) [ABHK18],
we employ an abstraction which only keeps the most relevant parts of a model, i.e., states
with a sufficiently large probability to be reached from the initial state(s). Analysis of
this partial model then yields best- and worst-case results for each measure, by assuming
that all removed states are either target states (best case) or are not (worst case). This
method returns imprecise solution vectors as used in Sect. 12.4, which can be refined up
to arbitrary precision by retaining more states of the original model.

Similar to building the complete models, two approaches are possible to create the
partial models: (1) fixing the valuation and directly abstracting the concrete CTMC, or
(2) first building the complete pCTMC and then abstracting the concrete CTMC. We
reuse partial models for similar valuations to avoid costly computations. We cluster
parameter valuations that are close to each other (in Euclidean distance). For parameter
valuations within one cluster, we reuse the same partial model (in terms of the states),
albeit instantiating it according to the precise valuation.

12.6 Numerical Experiments
We answer three questions about (a prototype implementation of) our approach:
Q1. Can we verify CTMCs taking into account the uncertainty about the rates?
Q2. Howwell does our approach scale with respect to the number of measures (modeled

by the solution function) and samples?
Q3. How does our approach compare to naïve baselines (to be defined below)?

Setup | We implement our approach in Python, using the explicit engine of
Storm [HJKQ+22] and the improvements of Sect. 12.5 to sample from upCTMCs. Our
current implementation is limited to pCTMC instantiations that are graph-preserving, i.e.,
for any pair B, B′ ∈ (either '(B, B′) [D] = 0 or '(B, B′) [D] > 0 for all D. We solve optimiz-
ation problems using the ECOS solver [DCB13]. All experiments ran single-threaded
on a computer with 32 3.7 GHz cores and 64 GB RAM. We show the effectiveness of
our method on a large number of publicly available pCTMC [HKPQ+19] and fault tree
benchmarks [RBNS+19] across domains.

4Recall from Chapter 11 that a fault tree can be represented as a CTMC.

12

12.6 Numerical Experiments 229

Reproducibility | All source code, benchmarks, and logfiles used to produce the
experimental results are archived at https://doi.org/10.5281/zenodo.6523863.

12.6.1 Converting pCTMCs into upCTMCs
We illustrate on two specific benchmarks how we convert a pCTMC into a upCTMC by
equipping its parameters with a probability distribution. We omit details on the other
benchmarks for brevity.

Epidemic modeling | We consider the classical SIR infection model [AB12] of an
infectious disease spreading through a population. The factored state B = ((, � , ') of
this CTMC counts the susceptible, infected, and recovered populations, denoted by (, � ,
' ≥ 0. Infections and recoveries (we assume that immunization is permanent) occur
based on the following parametric rules that depend on parameters _8 and _A :

Infection: (+ � _8 ·(·�−−−−→ � + � , Recovery: �
_A ·�−−−→ '.

In the classical SIR model, _8 and _A are assumed to be known precisely, while we
consider the parameters _8 = N(0.05, 0.002) and _A = N(0.04, 0.002) to be normally
distributed (recall that we only use samples from these distributions). We define a
solution function sol : VC+ → R< , which is defined for all D ∈ VC+ as

sol(D) =
[
PrC+ [D] (B� |= iC1), . . . , PrC+ [D] (B� |= iC<)

]>
,

where iC is a CSL path formula defined as

iC = (� > 0)U[100,C] (� = 0).

Thus, the solution function models the probability of the disease becoming extinct (� = 0)
within the time interval [100, C], for different values of C . In this experiment, we define
these time points to be evenly spaced over the time interval [100, 200]:

C8 = 100 + 100 · 8
<

for all 8 = 1, . . . ,<.

Buffer system | We augment the producer-consumer buffering system considered
by [CCGK+18]. We equip the six parameters of this pCTMC by uniform probability
distributions over their respective domains. This pCTMC models the transfer of requests
from a producer (at a rate of _6 ∈ [32, 38]) to consumers who consume them (at a
rate of _2 ∈ [27, 33]). The requests are sent at a rate of _C ∈ [27, 33], via either a
slow or a fast buffer, with probabilities of 0.6 and 0.4, respectively. While being faster,
the fast buffer is less reliable than the slow buffer (it loses requests with a probability
_loss ∈ [0.025, 0.075]), and has a smaller capacity. Requests from the slow buffer are
transferred to the fast buffer with a probability proportional to the occupancy. The
transmission rate of the slow buffer is _slow ∈ [5, 15]; the rate of the fast buffer is
_X ∈ [5, 15] higher. We consider a solution function sol : VC+ → R2 modeling two
measures: (1) the expected transferred requests until time 25, and (2) the probability
that the utilization of both buffers is above 75% within the time [20, 25].

https://doi.org/10.5281/zenodo.6523863

230 12 CTMCs With Uncertain Rates

Table 12.1: Excerpt of the benchmark statistics (sampling time is per 100 CTMCs;< is
the dimension of the solution function).

Model size Storm run time [s] Scen.opt. time [s]

benchmark < #pars #states #trans Init. Sample (×100) # = 100 # = 200
SIR (140) 26 2 9 996 19 716 0.29 2947.29 18.26 63.27
SIR (140)a 26 2 9 996 19 716 0.29 544.27 25.11 129.66
Kanban (3) 4 13 58 400 446 400 4.42 46.95 2.28 6.69
Kanban (5) 4 13 2 546 432 24 460 016 253.39 4363.63 2.03 5.94
Polling (9) 2 2 6 912 36 864 0.64 22.92 2.13 6.66
Buffer 2 6 5 632 21 968 0.48 20.70 1.21 4.15
Tandem (31) 2 5 2 016 6 819 0.11 862.41 5.19 24.30
Rbc 40 6 2 269 12 930 0.01 1.40 5.27 16.88
Rc (1,1) 25 21 8 401 49 446 27.20 74.90 5.75 20.34
Rc (1,1)a 25 21 n/ab n/ab 0.02 2.35 29.23 150.61
Rc (2,2)a 25 29 n/ab n/ab 0.03 27.77 24.86 132.63
Hecs (2,1)a 25 5 n/ab n/ab 0.02 9.83 26.78 145.77
Hecs (2,2)a 25 24 n/ab n/ab 0.02 194.25 33.06 184.32

a Computed using approximate model checking up to a relative gap between upper
bound solC++ (D) and lower bound solC+− (D) below 1% for every sample D ∈ VC+ .
b Model size is unknown, as the approximation does not build the full state-space.

12.6.2 Applicability
An excerpt of the benchmark statistics is shown in Table 12.1 (for the full table, we
refer to [3, Appendix C]). For all but the smallest benchmarks, sampling and computing
the solution vectors by model checking is more expensive than solving the scenario
problems. In the following, we illustrate that 100 samples are sufficient to provide
qualitatively good prediction regions and associated lower bounds.

Plotting prediction regions | Fig. 12.10 shows prediction regions on the extinction
probability of the disease in the SIR model and is analogous to the tubes in Fig. 12.1d.5
These regions are obtained by applying our algorithm with varying values for the cost
of relaxation d . For a confidence level of V = 99%, the widest (smallest) tube in Fig. 12.10
corresponds to a lower bound probability of ` = 91.1% (` = 23.9%). Thus, we conclude
that, with a confidence of at least 99%, the curve created by the CTMC for a parameter
value sampled according to P will lie within the outermost region in Fig. 12.10 with a
probability of at least 91.1%.

Similarly, Fig. 12.11 shows # = 200 solution vectors for the Buffer benchmark, with a
prediction region as a Pareto front on two measures, thus highlighting that our approach
also supports regions of different shapes. For a confidence level of V = 99%, the outer
and inner prediction regions are associated with a lower bound probability of ` = 91.1%
and ` = 66.2%, respectively.

Tightness of the solution | In Table 12.2, we investigate the tightness of our results.
For the experiment, we set d = 1.1 and solve Ld

U for different values of # , repeating
every experiment 10 times, resulting in the average bounds `. Then, we sample 1 000
5We present the analogous plots for various other benchmarks in [3, Appendix C].

12

12.6 Numerical Experiments 231

Ex
tin

ct
io

n
pr

ob
ab

ili
ty

Figure 12.10: The prediction regions for
the SIR (60) benchmark
with # = 400 samples.

Figure 12.11: The Pareto front for the
Buffer benchmark with
= 200 samples.

Table 12.2: Lower bounds ¯̀ and standard deviation (SD), vs. the observed number of
1 000 additional solutions that indeed lie within the obtained regions.

(a) Kanban (3).
V = 0.9 V = 0.999 Frequentist

¯̀ SD ¯̀ SD Observed
100 0.862 0.000 0.798 0.000 959 ± 22.7
200 0.930 0.000 0.895 0.000 967 ± 17.4
400 0.965 0.001 0.947 0.001 984 ± 8.6
800 0.982 0.000 0.973 0.000 994 ± 3.2

(b) Railway crossing, Rc (1,1,hc).
V = 0.9 V = 0.999 Frequentist

¯̀ SD ¯̀ SD Observed
100 0.895 0.018 0.835 0.020 954 ± 26.8
200 0.945 0.007 0.912 0.008 980 ± 12.8
400 0.975 0.004 0.958 0.005 990 ± 8.3
800 0.986 0.002 0.977 0.003 995 ± 4.3

solutions and count the observed number of solutions contained in every prediction
region, resulting in an empirical approximation of the containment probability. Recall
that for d > 1, we obtain a prediction region that contains all solutions, so this observed
count grows toward # . The lower bounds grow toward the empirical count for an
increased # , with the smallest difference (Rc, # = 800, V = 0.9) being as small as 0.9%.
Similar observations hold for other values of d .

Handling imprecise solutions | The approximate model checker is significantly
faster (see Table 12.1 for SIR (140) and Rc), at the cost of obtaining imprecise solution
vectors.6 For SIR (140), the sampling time is reduced from 49 to 9min, while the scenario
optimization time is slightly higher at 129 s. This difference only grows larger with the
size of the CTMC. For the larger instances of Rc and Hecs, computing exact solutions is
infeasible at all (one Hecs (2,2) sample alone takes 15min).

While the bounds on the containment probability under imprecise solutions may
initially be poor (for example, the setting in Fig. 12.12a results in ` = 2.1%), we can
improve the results significantly using the refinement scheme proposed in Sect. 12.4.4.
For example, Fig. 12.12c shows the prediction region after refining 31 of the 100 solutions,
which yields ` = 74.7%. Thus, by iteratively refining only the imprecise solutions on the
boundary of the prediction regions, we significantly tighten the obtained bounds on the
containment probability.

6We terminate at a relative gap between upper/lower bound of the solution below 1%.

232 12 CTMCs With Uncertain Rates

(a) No solutions refined. (b) Intermediate step. (c) 31 refined solutions.

Figure 12.12: Refining imprecise solution vectors (red boxes) for Rc (2,2), # = 100.

Table 12.3: Run times in [s] for solving the scenario problems for SIR and Rc with d = 0.1
(timeout (TO) of 1 hour) for different sample sizes = and numbers of measures
< modeled by the solution function.

(a) SIR (population 20).
/< 50 100 200 400 800
100 0.97 1.59 3.36 9.17 25.41
200 3.69 7.30 22.91 59.45 131.78
400 29.43 76.13 153.03 310.67 640.70
800 261.97 491.73 955.77 1924.15 TO

(b) Railway crossing, Rc (1,1,hc).
/< 50 100 200 400
100 1.84 3.40 8.18 24.14
200 6.35 14.56 45.09 113.09
400 34.74 96.68 203.77 427.80
800 292.32 579.09 1215.67 2553.98

12.6.3 Scalability
In Table 12.3, we report the run times for steps (3)–(5) of our algorithm in Fig. 12.7 (i.e.,
for solving the scenario problems, but not for computing the solution vectors in Storm).
We solve problem L

d

U for d = 0.1, with different numbers of samples # and numbers
of measures< modeled by the solution function. Our approach scales well to realistic
numbers of samples (up to 800) and measures (up to 400). The computational complexity
of the scenario problems is largely independent of the size of the CTMC, and hence, similar
run times are observed across the benchmarks (as also shown by Table 12.1).

12.6.4 Comparison to baselines
We compare against two baselines: (1) Scenario optimization to analyze each measure
independently, yielding a separate probabilistic guarantee on each measure. (2) A
frequentist (Monte Carlo) baseline, which samples a large number of parameter values
and counts the number of associated solutions within a region.

Analyzing measures independently | To show that analyzing a full set of measures
at once, e.g., the complete probability curve, is essential, we compare our method to the
baseline that analyzes each measure independently and combines the obtained bounds
on each measure afterward. We consider the PCS (Buffer) benchmark with precise
samples and solve Ld

U for d = 2.
Table 12.4 presents the full comparison on the PCS benchmark between our approach

and the baseline scenario approach that analyzes each measure independently. In this
table, we report the average lower bounds (over 10 iterations) on the containment
probability for different sample sizes # = 100, . . . , 800, and confidence levels V . For

12

12.7 Related Work 233

Table 12.4: Obtained bounds (for the PCS fault tree) on the containment probability for
our approach and the baseline that analyzes each measure independently.

= 100 # = 200 # = 400 # = 800

Method V = 0.9 V = 0.999 V = 0.9 V = 0.999 V = 0.9 V = 0.999 V = 0.9 V = 0.999
Our approach 0.908 0.848 0.937 0.903 0.976 0.960 0.984 0.975
Baseline 0.045 0.010 0.212 0.103 0.461 0.322 0.679 0.567

= 100 samples and V = 99.9%, our approach returns a lower bound probability of
` = 84.8%. By contrast, for this value of V = 99.9%, the naïve baseline yields a lower
bound of only 1.0%. While the difference between both methods decreases with an
increasing number of samples, our approach consistently outperforms the baseline for
different values of V and # . There are two reasons for this large difference. First, the
baseline applies Theorem 12.28 once for each of the 25 measures, so it must use a more
conservative confidence level of Ṽ = 1 − 1−V

25 = 0.9996. Second, the baseline takes
the conjunction over the 25 independent lower bounds, which drastically reduces the
obtained bound.

Frequentist baseline | The comparison to the frequentist baseline on the Kanban
and Rc benchmarks yields the previously discussed results in Table 12.2. The results
in Tables 12.1 and 12.3 show that the time spent for sampling is (for most benchmarks)
significantly higher than for scenario optimization. Thus, our scenario-based approach
has a relatively low cost while resulting in valuable guarantees which the baseline does
not give. To still obtain a high confidence in the result, a much larger sample size is
needed for the frequentist baseline than for our approach.

12.7 Related Work
Several verification approaches exist to handle uncertain Markov models. We briefly
discuss the approaches most related to our contributions from this chapter.

For (discrete-time) interval Markov chains or Markov decision processes, several
approaches verify against all probabilities within the intervals [JL91; GLD00; SVA06;
Sku09; PLSS13]. Lumpability of interval CTMCs is considered in [CGLT+21]. In con-
trast to upCTMCs, interval Markov chains have no dependencies between transition
uncertainties, and no distributions are attached to the intervals.

Parametric Markov models generally define probabilities or rates via functions over
the parameters. The standard parameter synthesis problem for discrete-time models is
to find all valuations of parameters that satisfy a specification. Techniques range from
computing a solution function over the parameters, to directly solving the underlying
optimization problems [Daw04; HHZ11b; JÁHJ+24; CJJK+22]. Parametric CTMCs are
investigated in [HKM08; CDPK+17], but are generally restricted to a few parameters.
The work [CCGK+18] aims to find a robust parameter valuation in pCTMCs.

For all approaches listed so far, the results may be rather conservative, as no prior
information on the uncertainties (the intervals) is used. That is, the uncertainty is not
quantified, and all probabilities or rates are treated equally as likely. In our approach,
we do not compute solution functions, as the underlying methods are computationally
expensive and usually restricted to a few parameters.

234 12 CTMCs With Uncertain Rates

Quantified uncertainty is studied in [MMAG14]. Similarly to our work, the approach
draws parameter values from a probability distribution over the model parameters and
analyzes the induced model via model checking. However, [MMAG14] studies DTMCs
and performs a frequentist (Monte Carlo) approach, cf. Sect. 12.6, to compute estimates
for a single measure, without prediction regions. Moreover, our approach requires
significantly fewer samples, cf. the comparison in Sect. 12.6.4.

The work in [BMS16; BS18] takes a sampling-driven Bayesian approach for pCTMCs.
In particular, they take a prior on the solution function over a single measure and update
it based on samples (potentially obtained via statistical model checking). We assume no
prior on the solution function and, as mentioned before, do not compute the solution
function due to the expensive underlying computations.

Statistical model checking (SMC) [AP18; LDB10; DHKP17; LLTY+19] samples paths
in stochastic models to perform model checking. This technique has been applied to
numerous models [DLLM+15; DLLM+11; DHS18; RGRK+09], including CTMCs [SVA05;
YS06]. SMC analyzes a concrete CTMC by sampling from the known transition rates,
whereas for upCTMC, these rates are parametric.

The scenario approach [CG08; CCG21] is widely used in control theory [CC06]
and recently in machine learning [CG20] and reliability engineering [RC21]. Within a
verification context, closest to our work is our paper [2], which we discussed in Chapter 9
and considers the verification of single measures for uncertain parametric MDPs. [2]
relies on the so-called sampling-and-discarding approach [CG11], while we use the
risk-and-complexity perspective [GC22], yielding better results for problems with many
decision variables.

Summary

î Uncertain parametric CTMCs (upCTMCs) extend parametric CTMCs (pCT-
MCs) with a probability distribution over the parameter space.

î We presented a novel sampling-based approach for analyzing upCTMCs.
î Our method provides statistical guarantees on the typical performance

characteristics from a finite set of parameter samples.
î As demonstrated by our experiments, using a few hundred samples is

sufficient to obtain high-confidence statistical guarantees.

13

235

13 CTMCs With Imprecisely Timed
Observations

Summary | We consider runtime monitoring for continuous-time Markov chains
(CTMCs). In such applications, we must incorporate past observations, whose timings
may be uncertain. Thus, we consider a setting in which we are given a sequence of
imprecisely timed labels called the evidence. The problem is to compute reachability
probabilities, which we condition on this evidence. Our key contribution is a method
that solves this problem by unfolding the CTMC states over all possible timings for the
evidence. We formalize this unfolding as a Markov decision process (MDP) in which
each timing for the evidence is reflected by a scheduler. This MDP has infinitely many
states and actions in general, making a direct analysis infeasible. Thus, we abstract this
continuous MDP into a finite interval Markov decision process (IMDP) and develop an
iterative refinement scheme to upper-bound conditional probabilities in the CTMC. We
showcase the feasibility of our method on several numerical benchmarks.

Origins | This chapter is based on
[11] Badings, Volk, Junges, Stoelinga and Jansen (2024) ‘CTMCs with Imprecisely Timed

Observations’. TACAS.
In this paper, we present the first method to compute weighted conditional reachability
probabilities in CTMCs with imprecisely timed observations.

Background | Familiarity with CTMCs and their analysis as discussed in Chapter 11 is
assumed. Furthermore, the reader is assumed to be familiar with (i)MDPs and computing
reachability probabilities for these models, as discussed in Chapter 3.

13.1 Introduction
Standard model checking algorithms for continuous-time Markov chains (CTMCs)
assume a static and known initial state [BHHK03; ASSB00]. However, in applications
such as runtime monitoring [SSAB+19; BDDF+18], we need to analyze an already running
system without a static initial state. As no initial state is known, we must incorporate
past observations instead. These observations are given as a sequence of CTMC labels,
each of which is observed at a specific time. We call this sequence of timed labels the
evidence. We want to incorporate this evidence by conditioning the state of the CTMC
on the evidence. For example, we want to answer the question: “What is the probability
of a failure for a production machine (modeled as a CTMC) before time) , given that we
have observed particular labels at earlier times C1, C2, . . . , C=?”

236 13 CTMCs With Imprecisely Timed Observations

Imprecise observation times | These conditional probabilities depend on the exact
time at which each label was observed. However, in realistic scenarios, the times for
the labels in the evidence may not be known precisely. For example, suppose that
inspections are always done in the first week of a month, but the precise moment
of inspection may be unknown. Intuitively, we can interpret such imprecisely timed
evidence as a potentially infinite set of (precisely timed) instances of the evidence that
vary only in the observation times. For example, an inspection done on “January 2
exactly at noon” is an instance of the imprecise observation time of “the first week of
January.” This perspective motivates a robust version of the previous question: “Given
the imprecisely timed evidence, what is the maximal probability of a failure before time
) over all instances of the evidence?”

Overall goal | In this chapter, we consider a setting in which we are given a labeled
CTMC together with imprecisely timed evidence. For each instance of the evidence,
we can define the probability of reaching a set of target states, conditioned on that
evidence. The problem is to compute the supremum over these conditional probabilities
for all instances of the evidence. We generalize this problem by considering weighted
conditional reachability probabilities (or simply the weighted reachability), where we
assign to each state a nonnegative weight. Standard conditional reachability is then
a special case with a weight of one for the target states and zero elsewhere. Overall,
our main contribution is the first method to compute weighted conditional reachability
probabilities in CTMCs with imprecisely timed evidence.

Outline | This chapter is structured as follows. First, in Sect. 13.2, we formalize
the problem statement of conditional reachability probabilities for CTMCs. Second,
in Sect. 13.3, we present our approach to solving this problem, which is based on an
unfolding of the CTMC into an Markov decision process (MDP) with (potentially)
infinitely many states and actions. Analyzing this infinite MDP is infeasible, so in
Sect. 13.4 we create an abstraction into a finite interval Markov decision process (IMDP).
In Sect. 13.5, we use this abstraction to compute bounds on conditional reachability
probabilities. In Sect. 13.6, we show the feasibility of our method on several numerical
benchmarks. We discuss related work in Sect. 13.7. Finally, we provide mathematical
proofs in Sect. 13.8 and discuss open challenges in Sect. 13.9.

13.2 The CTMC Monitoring Problem
The key problem we want to solve is to compute reachability probabilities for the CTMC
conditioned on a timed sequence of labels. We call such a timed sequence of labels the
evidence. In this section, we define the concept of evidence more formally and state the
formalCTMC

monitoring
CTMC monitoring problem that we solve.

Labeled CTMCs | In this chapter, we consider labeled CTMCs as in Def. 11.1. For
simplicity, we assume that the labeling function maps every state B ∈ (to exactly one
atomic proposition, i.e., the labeling function is of the form ! : (→ �% . This restriction
is without loss of generality, and our results can be extended to CTMCs with a labeling

13

13.2 The CTMC Monitoring Problem 237

B0

B1

B2

_0

_0 _3

_3

(a) CTMC.

0 C1 C2 C★

(b) Evidence graph.

B0, 0

B1, 0

B2, 0

B0, C1

B1, C1

B2, C1

B0, C2

B1, C2

B2, C2

B0, C★

B1, C★

B2, C★

(c) Unfolded MDP.

Figure 13.1: The CTMC (a) for Example 13.1, (b) the graph for the precise evidence
d = (C1, >1) , (C2, >2), and (c) the states of the MDP unfolding from Def. 13.7.

function of the form ! : (→ 2�% as in Def. 11.1.1 We will also refer to the atomic
propositions as colorscolors.

Example 13.1 (Inventory system) Consider a simple, single-product inventory
where the number of items in stock ranges from 0 to 2, but we can only observe
whether the inventory is empty or not. The inventory is initially empty, and products
arrive and deplete with a fixed arrival and depletion rate, respectively. This system is
modeled by the CTMC shown in Fig. 13.1a with states (= {B0, B1, B2} (modeling the
stock level) and labels shown by the two colors (for empty and for nonempty).
The rates at which items arrive and deplete are '(B0, B1) = '(B1, B2) = _0 = 3 and
'(B1, B0) = '(B2, B1) = _3 = 2, respectively.

Evidence | The evidenceevidence d = (C1, >1) , . . . , (C3 , >3) ∈ (R>0×�)3 is a sequence of 3 times
and labels such that C8 < C8+1 for all 8 ∈ {1, . . . , 3 − 1}. A timed label (C8 , >8) means that
at time C8 , the CTMC was in a state B ∈ (for which !(B) = >8 . Since each time C ∈ R>0
can only occur once in d , we overload d and denote the evidence at time C ∈ {C1, . . . , C3 }
by d (C) = > ∈ � , such that (C, >) ∈ d .

While a timed path of a CTMC describes the state at every continuous point in time,
the evidence only contains the observations at 3 points in time. We say that a path c is

path con-
sistent with
evidence

consistent with evidence d , written as c |= d , if each timed label in d matches the label
of path c at time C , i.e., if !(c (C)) = d (C) ∀C ∈ {C1, . . . , C3 }.

Example 13.2 An example of evidence for the CTMC in Fig. 13.1a is d =

(0.4,) , (1.9,). The path fragment c = B01B10.5B20.8B1 is consistent with evid-
ence d , i.e., c |= d , because the CTMC was in state B0 (with color) after time 0.4,
and in state B2 after time 1.9.

Conditional probabilities | We want to compute the conditional probability
PrC (c (C3) = B) | [c |= d]) that the CTMC C with initial state B� generates a path
being in state B at time C3 , conditioned on the evidence d . Using Bayes’ ruleBayes’ rule, we can

1Specifically, we would define a larger set of atomic propositions�% ′, such that each 2 ∈ �% ′ represents
a possible subset of atomic propositions� ⊆ �% in the original CTMC.

238 13 CTMCs With Imprecisely Timed Observations

characterize this conditional probability as follows (assuming 0
0 = 0, for brevity):

PrC (c (C3) = B | [c |= d]) =
PrC ([c (C3) = B] ∩ [c |= d])

PrC (c |= d)
. (13.1)

Imprecise timings | We extend evidence with uncertainty in the timing of each
label. The imprecisely timed evidence (orimprecise

evidence
imprecise evidence) Ω = (T1, >1) , . . . , (T3 , >3) is

a sequence of 3 labels and uncertain timings T8 = ∪@9=1 [C 9 , C 9], with C
9
≤ C 9 , @ ∈ N.

Note that the uncertain timing T8 can model both singletons (T8 = {1, 2, 3}) and unions
of intervals (T8 = [1, 1.5] ∪ [2, 2.5]). We require that maxC ∈T8 (C) < minC ′∈T8+1 (C ′) for
all 8 ∈ {1, . . . , 3 − 1}, which means that the order of the labels is known, despite the
uncertainty in the observation times. Again, we overload notation and denote the
evidence at time C by Ω(C) = > , such that ∃ (T , >) ∈ Ω with C ∈ T .

Imprecise evidence induces a set of instances of the evidence that only differ in the
label times. This set of instances is uncountably infinite whenever one of the imprecise
timings T is a continuous set. Formally, the evidence d = (C1, >1) , . . . , (C3 , >3) is an
instance of the imprecise evidence Ω, written as d ∈ Ω, if C8 ∈ T8 for all 8 = 1, . . . , 3 .

Example 13.3 An example of imprecise evidence for the CTMC in Example 13.1
is Ω = ([0.2, 0.8],) , ([1.4, 2.1],). The precise evidence d = (0.4,) , (1.9,)
described in Example 13.2 is an instance of Ω, i.e., d ∈ Ω. However, d ′ =

(0.1,) , (1.9,) and d ′′ = (0.4,) , (1.9,) are not, i.e., d ′ ∉ Ω, d ′′ ∉ Ω, as the
timings and labels do not match, respectively.

13.2.1 Problem statement
LetF : (→ R≥0 be a so-calledstate-

weight
function

state-weight function, which assigns to each CTMC state
B ∈ (a nonnegative weight. The weight F (B) represents a general measure of risk
associated with each state B ∈ (, as used in [JTS21]. For example,F (B) may represent
the probability of reaching a set of target states (� from B ∈ (within some time horizon
ℎ ≥ 0. We then consider the following problem.

Problem 13.4 (Weighted conditional reachability) Given a CTMC C, a state-
weight functionF , and the imprecisely timed evidence Ω, compute the (maximal)
weighted conditional reachability probability, (Ω):

, (Ω) = sup
d∈Ω

∑
B∈(

PrC (c (C3) = B | [c |= d]) ·F (B) .

Let us illustrate Problem 13.4 by means of the following example.

Example 13.5 For the CTMC in Example 13.1, consider the state-weight function
that assigns to each state the probability of reaching state B0 within time C = 0.1.
Then, the problem above is interpreted as follows: “Given the imprecisely timed
evidence Ω, compute the probability (conditioned on Ω) of reaching state B0 within
time C = 0.1 (after the final time point of the evidence).”

13

13.2 The CTMC Monitoring Problem 239

(1) MDP unfolding
M = Unfold(C,GΩ)

(Def. 13.7)

(2) Conditioning
on the evidence Ω

(Def. 13.12)

(3) Abstract IMDP
MI = Abstract(M |Ω,Ψ)

(Def. 13.16)

(4) Compute upper
and lower bounds
(Lemma 13.19)

1) CTMC C
2) State-weight functionF
3) Imprecise evidence Ω

Initial time
partition Ψ

Upper and
lower bounds
on, (Ω)

M M |Ω MI

Refinement (splitting
elements of Ψ)

Sect. 13.3 Sect. 13.4 Sect. 13.5

Figure 13.2: Conceptual workflow of our approach for solving Problem 13.4.

Variations | For ease of notation, we focus on computing the maximal weighted
conditional reachability as formulated in Problem 13.4. To instead compute the minimal
weighted conditional reachability, we would swap every inf and sup (and max and
min) in our approach, but our general approach remains the same. Furthermore, by
setting F (B) = 1 for all B ∈ (� and F (B) = 0 otherwise, we can also compute the
probability of being in a state in (� immediately after the evidence. Finally, we remark
that Problem 13.4 only considers events after the end of the evidence. This setting is
motivated by applications where the exact system state is not observable, but where
actual system failures can be observed. Thus, one can typically assume that the system
has not failed yet, and the problem, as formalized in Problem 13.4, is to predict the
conditional probability of a future system failure.

13.2.2 Our approach
Our overall workflow to solve Problem 13.4 is summarized in Fig. 13.2 and consists
of four blocks. We briefly introduce our approach from a high-level perspective, after
which we discuss each block in more detail in Sects. 13.3 to 13.5.

1) Unfolding | The first step is to unfold the CTMC over all possible timings of the
imprecisely timed evidence. We formalize this unfolding as an MDP [Put94], in which
the timing imprecision is reflected by nondeterminism.

2) Conditioning | The weighted reachability, (Ω) in Problem 13.4 can be computed
via (unconditional) reachability probabilities on a transformed version of this MDP.
Inspired by ideas from [BKKM14; JTS21], we refute paths through the model that are
inconsistent with all evidence instances d ∈ Ω, and instead loop these paths back to the
initial state. For the special case of evidence with precise observation times, we obtain a
precise solution to the problem that we can directly compute. By contrast, imprecisely
timed evidence yields an unfolded MDP with infinitely many states and actions.

3) Abstraction | Analyzing the infinite-state/action MDP directly is infeasible. Thus,
we propose an abstraction of this infinite MDP as a finite IMDP, similar to game-based
abstractions [KKNP10]. A robust analysis of the IMDP yields upper and lower bounds on
the weighted reachability for the CTMC. Moreover, we propose an iterative refinement
scheme that converges to the weighted reachability in the limit.

240 13 CTMCs With Imprecisely Timed Observations

4) Computing bounds in practice | Finally, we use the IMDP abstraction and refine-
ment to obtain sound upper and lower bounds on the weighted reachability in practice.
In Sect. 13.6, we show the feasibility of our method across several numerical bench-
marks. Concretely, we show that we obtain reasonably tight bounds on the weighted
reachability within a reasonable time.

13.3 Conditional Reachability With Imprecise Evidence
In this section, we treat the first two blocks of Fig. 13.2. In Sect. 13.3.1, we unfold
the CTMC over the times in the imprecise evidence into an MDP. The main result of
this section, Theorem 13.11, states that the conditional reachability on the CTMC in
Problem 13.4 is equal to the maximal conditional reachability probabilities in the MDP
over a subset of schedulers (those that we call consistent ; see Def. 13.8). In Sect. 13.3.2, we
use results from [BKKM14] to determine these conditional probabilities via unconditional
reachability probabilities on a transformed version of the MDP.

13.3.1 Unfolding the CTMC into an MDP
We interpret the (precisely timed) evidence d = (C1, >1) , . . . , (C3 , >3) as a directed graph
that encodes the trivial progression over the time steps C1, . . . , C3 . While this perspective
is trivial for precisely timed evidence, it will be useful when dealing with imprecisely
timed evidence later on.

Definition 13.6 (Evidence graph) Anevidence
graph

evidence graph G = (N , E) is a directed
graph where each node C ∈ N ⊆ R>0 ∪ {0, . . . , C★} is a point in time (or the initial
time 0 or terminal time C★), and with directed edges E ⊂ {C → C ′ : C, C ′ ∈ N}, such
that C ′ > C for all C → C ′ ∈ E.

The evidence graph Gd =
(
Nd , Ed

)
for the precise evidence d has nodes Nd =

{0, C1, . . . , C3 , C★} and edges Ed = {C8−1 → C8 : 8 = 2, . . . , 3} ∪ {0 → C1, C3 → C★}. As
illustrated in Fig. 13.1b, the graph Gd has exactly one path, which follows the time points
C1, . . . , C3 of the evidence d itself. Likewise, we model the imprecise evidence Ω as a
graph GΩ which is the union of all graphs Gd for all instances d ∈ Ω, i.e.,

GΩ = (NΩ, EΩ) = ∪d∈Ω (Gd) =
(
∪d∈Ω (Nd),∪d∈Ω (Ed)

)
.

If Ω has infinitely many instances, then GΩ has infinite branching. Importantly, we
observe that every path C0C1 . . . C3C★ through graph GΩ corresponds to the time points of
the precise evidence d = (C1, >1) , . . . , (C3 , >3) ∈ Ω (and vice versa).

We denote the successor nodes of C ∈ N by post(C) = {C ′ ∈ N : C → C ′ ∈ E}. For
example, the graph in Fig. 13.1b has post(0) = C1, post(C1) = C2 and post(C2) = C★.

MDP unfolding | We introduce the unfolding operator M = Unfold(C,G), which
takes a CTMC C and a graph G, and returns the unfolded MDP M defined as follows.
Recall from Sect. 11.2 that PXB (C) ∈ Distr(() denotes the transient probability distribution
over states at time C , when starting in the fixed state B ∈ ((at time zero).

13

13.3 Conditional Reachability With Imprecise Evidence 241

Definition 13.7 (Unfolded MDP) For a CTMC C = ((, B� , ', !) and a graph G =

(N , E), the unfolded
MDP

unfolded MDP Unfold(C,G) = (&,�,@� , %) has states& = (×N , actions
� = N , initial state @� = (B� , 0), and transition function % , which is defined for all
(B, C) ∈ & , C ′ ∈ post(C), B′ ∈ (as

%
(
(B, C) , C ′, (B′, C ′)

)
=

{
PXB (C ′ − C) (B′) if C ′ ≠ C★,
1(B=B′) if C ′ = C★,

(13.2)

As an example, the unfolding of the CTMC in Fig. 13.1a over the graph in Fig. 13.1b is
shown in Fig. 13.1c. A state (B, C) ∈ & in the unfolded MDP is interpreted as being in
CTMC state B ∈ (at time C .

In state (B, C), the set of enabled actions is �((B, C)) = post(C) ⊂ N , and taking an
action C ′ ∈ post(C) corresponds to deterministically jumping to time C ′. In other words,
the set of enabled actions coincides with the successor states in the graph G. Thus, for
precisely timed evidence, each state in the unfolded MDP has exactly one enabled action,
i.e., the model is, in fact, a discrete-time Markov chain (DTMC). For imprecisely timed
evidence, however, we obtain an unfolded MDP with infinitely many actions enabled in
each state in general.

The effect of each action is stochastic and determines the next CTMC state. The
transition probability % ((B, C) , C ′, (B′, C ′)) for C ′ ≠ C★ models the probability of starting in
CTMC state B ∈ (and being in state B′ ∈ (after time C ′−C has elapsed, which is precisely
the transient probability PXB (C ′ − C) (B′) defined in Sect. 11.2. Finally, the (terminal) states
(B, C★) for all B ∈ (are absorbing.

Interpretation of schedulers | Every instance d ∈ Ω of the imprecise evidence
Ω = (T1, >1) , . . . , (T3 , >3) corresponds to fixing a precise time C8 ∈ T8 for all 8 = 1, . . . , 3 .
For each such evidence instance d ∈ Ω, there exists a (memoryless deterministic;
see Sect. 3.1.1) scheduler f ∈ SMstat for MDPM = Unfold(C,GΩ) that induces a Markov
chain which only visits those times C1, . . . , C3 . We call such a scheduler f consistent with
the evidence d .

Definition 13.8 (Consistent scheduler) A scheduler f ∈ SMstat is consistent
scheduler

consistent with
d = (C1, >1) , . . . , (C3 , >3) ∈ Ω, written as f ∼ d , if for all CTMC states B ∈ (, we have

f ((B, 0)) = C1, f ((B, C8)) = C8+1 ∀8 ∈ {0, . . . , 3 − 1}, f ((B, C3)) = C★.

We denote the set of all consistent schedulers by ŜMstat ⊆ SMstat.

A consistent scheduler chooses the same action f ((B, C)) = f ((B′, C ′)) in any two MDP
states (B, C) , (B′, C ′) ∈ & for which C = C ′. There is a one-to-one correspondence between
choices d ∈ Ω and consistent schedulers: For every d ∈ Ω, there exists a scheduler
f ∈ ŜMstat such that f ∼ d , and vice versa.

Example 13.9 Consider imprecise evidence Ω = ([0.2, 0.8],) , ([1.4, 2.1],) for
the CTMC in Example 13.1. A scheduler with f ((B0, 0.4)) = 1.5, f ((B1, 0.4)) = 1.8 is
inconsistent as it chooses different actions in MDP states with the same time.

242 13 CTMCs With Imprecisely Timed Observations

B0, 0

B1, 0

B2, 0

B0, C1

B1, C1

B2, C1

B0, C2

B1, C2

B2, C2

B0, C★

B1, C★

B2, C★

(a) For d = 〈C1, 〉, 〈C2, 〉.

B0, 0

B1, 0

B2, 0

B0, C1

B1, C1

B2, C1

B0, C2

B1, C2

B2, C2

B0, C★

B1, C★

B2, C★

(b) For d = 〈C1, 〉, 〈C2, 〉.

Figure 13.3: The unfoldedMDP from Fig. 13.1c conditioned on different precise evidences.
States that do not agree with the evidence are looped back to the initial
state (depicted as red transitions).

Remark 13.10 The unfolded MDPM′ = Unfold(C,Gd) for the precise evidence d
has only a single action enabled in every state. Hence,M′ has only one scheduler
and directly reduces to a discrete-timeMarkov chain, such that we have ŜM

′
stat = SM

′
stat .

Conditional reachability on unfoldedMDP | As a main result, we show that, (Ω)
in Problem 13.4 can be expressed as maximizing conditional reachability probabilities in
the unfolded MDPM over the consistent schedulers ŜMstat ⊂ SMstat.

Theorem 13.11 (Conditional reachability in unfolded MDP) For a CTMC C
and the imprecise evidence Ω with graph GΩ , letM = Unfold(C,GΩ) be the un-
folded MDP. Then, using the notation from Sect. 3.2.2 (for the probability measure
PrMf over MDP paths b ∈ ΠMfin), Problem 13.4 is equivalently written as

, (Ω) = sup
f∈ŜMstat

∑
B∈(

PrMf (@� |= ♦ (B, C★) | [b |= d, f ∼ d]) ·F (B).

Proof. The proof is slightly tedious and is, therefore, presented in Sect. 13.8 at the
end of this chapter. Intuitively, the proof shows that for every instance d ∈ Ω,
the conditional transient probabilities in the CTMC are equivalent to conditional
reachability probabilities in the unfolded MDP under a f ∼ d consistent to d .

13.3.2 Computing conditional probabilities in MDPs
We describe a transformation of the unfolded MDP to compute the conditional reachab-
ility probabilities in Theorem 13.11. Intuitively, we refute all paths through the MDP
that do not agree with the labels in the evidence. Specifically, we find the subset of MDP
states &reset(Ω) ⊂ & that disagree with the evidence, defined as

&reset(Ω) =
{
(B, C) ∈ & : !(B) ≠ Ω(C)

}
⊂ &. (13.3)

We reset all states in &reset(Ω) by adding transitions back to the initial state with
probability one. Formally, we define the conditioned MDP M |Ω as follows.

13

13.3 Conditional Reachability With Imprecise Evidence 243

Definition 13.12 (Conditioned MDP) For M = Unfold(C,GΩ) = (&,�,@� , %),
the conditioned

MDP
conditioned MDPM |Ω =

(
&,�,@� , % |Ω

)
has the same states and actions, but the

transition function is defined for all (B, C) ∈ & , C ′ ∈ post(C), B′ ∈ (as

% |Ω
(
(B, C) , C ′, (B′, C ′)

)
=

{
%
(
(B, C) , C ′, (B′, C ′)

)
if (B, C) ∉ &reset(Ω),

1(B′=B�) if (B, C) ∈ &reset(Ω) .

Two examples of conditioning on precise evidence are shown in Fig. 13.3. Compared
to Fig. 13.1c, we removed all probability mass over paths that are not consistent with
the evidence and normalized the probabilities for all other paths. The following result
from [BKKM14] shows that conditional reachabilities in the unfolded MDP are equal to
unconditional reachabilities in the conditioned MDP.

Lemma 13.13 (Thm. 1 in [BKKM14]) Let Ω be imprecisely timed evidence, C a
CTMC, andM = Unfold(C,GΩ) an unfolded MDP. Furthermore, letM |Ω be the
conditioned MDP defined by Def. 13.12. For all consistent schedulers f ∈ ŜMstat and
for all CTMC states B ∈ (, it holds that

PrMf (@� |= ♦ (B, C★) | [b |= d, f ∼ d]) = Pr
M |Ω
f (@� |= ♦ (B, C★)).

Importantly, observe that Lemma 13.13 holds only for consistent schedulers (for incon-
sistent schedulers, f ∼ d does not exist).

Combining Lemma 13.13 with Theorem 13.11 directly expresses the conditional reach-
ability, (Ω) in terms of reachability probabilities on the conditioned MDP.

Theorem 13.14 (Solution to Problem 13.4 via conditioned MDP) Given a
CTMC C, a state-weight function F , and the imprecisely timed evidence Ω, let
M = Unfold(C,GΩ). Then, it holds that

, (Ω) = sup
f∈ŜMstat

∑
B∈(

Pr
M |Ω
f (@� |= ♦ (B, C★)) ·F (B).

Solving Problem 1 with precisely timed evidence is now straightforward by solving a
finite DTMC, see Remark 13.10. Furthermore, if the imprecise evidence has finitely many
instances, then the MDP is finite. A naïve approach to optimize over the consistent
schedulers is by enumeration, which we discuss in more detail in Sect. 13.5.

13.3.3 Computing evidence probability
We discuss a variation of Problem 13.4, which computes the probability for observing
a given precise evidence d . We show that, with minor modifications to our unfolding
procedure, we can compute the probability that a CTMC generates the given (precise)
evidence d . Instead of looping all states (B, C) ∈ &reset inconsistent with the evidence
(defined in Eq. (13.3)) back to the initial state, we now create self-loops for those states.
Formally, given an unfolded MDP (or in fact, DTMC)M = Unfold(C,Gd) = (&,�,@� , %)
for precise evidence d , we define the modified MDPMd =

(
&,�,@� , %d

)
with transition

244 13 CTMCs With Imprecisely Timed Observations

function %d defined for all (B, C) , (B′, C ′) ∈ & as

%d
(
(B, C) , C ′, (B′, C ′)

)
=

{
%
(
(B, C) , C ′, (B′, C ′)

)
if (B, C) ∉ &reset(Ω),

1((B,C)=(B′,C ′)) if (B, C) ∈ &reset(Ω),

with &reset defined by Eq. (13.3). This transformation of the unfolded MDP is illustrated
by Fig. 13.4 for two different precisely timed evidences. Then, the probability PrC (c |= d)
that CTMC C generates the evidence d is the probability that the modified MDPMd

reaches a state (B, C★) for time C★ and any CTMC state B ∈ ((sinceMd is, in fact, a
DTMC, we omit the scheduler):

PrC (c |= d) =
∑
B∈(

PrMd (@� |= ♦ (B, C★)). (13.4)

Intuitively, the right-hand side of Eq. (13.4) is the probability of ever reaching a terminal
state at time C★. Because all paths inconsistent with the evidence d are trapped by the
self-loops (in non-terminal states), Eq. (13.4) thus is the probability that the CTMC
generates a path that is consistent with d . For imprecise evidence Ω, we can also ask
for the worst-case probability to obtain any instance d ∈ Ω, by modifying the unfolded
MDPM = Unfold(C,GΩ) in an analogous manner to Def. 13.12.

13.4 Abstraction of Conditioned MDPs
For imprecisely timed evidence with infinitely many instances (e.g., imprecise timings
over intervals), the conditioned MDP from Sect. 13.3 has infinitely many states and
actions. In this section, we treat block (3) of Fig. 13.2 and propose anabstraction abstraction of
this continuous MDP into a finite IMDP. Similar to game-based abstractions [KKNP10;
HHWZ10; HNPW+11], we capture abstraction errors as nondeterminism in the transition
function of the IMDP. We will show that robust reachability probabilities in the IMDP
yield sound bounds on the conditional reachability, (Ω).

B0, 0

B1, 0

B2, 0

B0, C1

B1, C1

B2, C1

B0, C2

B1, C2

B2, C2

B0, C★

B1, C★

B2, C★

(a) For d = 〈C1, 〉, 〈C2, 〉.

B0, 0

B1, 0

B2, 0

B0, C1

B1, C1

B2, C1

B0, C2

B1, C2

B2, C2

B0, C★

B1, C★

B2, C★

(b) For d = 〈C1, 〉, 〈C2, 〉.

Figure 13.4: Using the unfolded MDP to compute the probability for two precisely timed
evidences. States that do not agree with the evidence are made absorbing
(depicted as red transitions).

13

13.4 Abstraction of Conditioned MDPs 245

0 C★T̃ 1
1 T̃ 1

2

(a) Coarsest time partition.

0 C★T̃ 1
1 T̃ 2

1 T̃ 1
2 T̃ 2

2

(b) Refined time partition.

Figure 13.5: Two partitions of imprecise evidence Ω = ([0.2, 0.8], >1) , ([1.4, 2.1], >2).
The partition in (a) consists of two elements, such that T̃ 1

1 = [0.2, 0.8]
and T̃ 1

2 = [1.4, 2.1], where (b) refines this to T̃ 1
1 ∪ T̃ 2

1 = [0.2, 0.8] and
T̃ 1
2 ∪ T̃ 2

2 = [1.4, 2.1].

13.4.1 Abstracting evidence times
The crux of our abstraction is to create a finite partition of the (infinite) sets of uncertain
timings in the evidence, as illustrated by Fig. 13.5. A partition of a set - is a collection of
sets partition(-) = (-1, . . . , -=) that cover - (i.e., - = ∪=8=1-8) and the interior of each
element is disjoint (i.e., int(-8) ∩ int(- 9) = ∅, 8, 9 ∈ {1, . . . , =}, 8 ≠ 9).

Definition 13.15 (Time partition) A partitiontime partition Ψ of the imprecise evidence
Ω = (T1, >1) , . . . , (T3 , >3) is a set Ψ = ∪38=1partition(T8) ∪ {0, C★}, where each
partition(T8) = {T 1

8 , . . . ,T
=8
8
} is a finite partition of T8 into =8 ∈ N>0 elements.

With abuse of notation, the element of Ψ containing time C is Ψ(C) ∈ Ψ, and Ψ−1(k) =
{C : Ψ(C) = k } is the set of times mapping to k ∈ Ψ. As shown by Fig. 13.5, for each
8 ∈ {1, . . . , 3}, the sets T̃ 1

8 , . . . , T̃
=8
8

are a partition of the set T8 .
To illustrate the abstraction, let (B, C) C ′ :% ′−−−→ (B′, C ′) denote the MDP transition from

state (B, C) ∈ & , under action C ′ ∈ �((B, C)) to state (B′, C ′) ∈ & , which has probability % ′.
Using this notation, we can express any MDP path as

(B� , 0)
C :%−−→ (B, C) C ′ :% ′−−−→ (B′, C ′) C ′′ :% ′′−−−−→ · · · C ′′′ :% ′′′−−−−−→ (B, C★) . (13.5)

For every elementk ∈ Ψ of partition Ψ, the abstraction merges all MDP states (B, C) ∈ &
for which the time C belongs to the elementk , that is, for which C ∈ Ψ−1(k). Thus, we
merge infinitely many MDP states into finitely many abstract states. The MDP path in
Eq. (13.5) matches the next path in the abstraction:

(B� , 0)
T:P−−−→ (B,T) T

′ :P′−−−−→ (B′,T ′) T
′′ :P′′−−−−−→ · · · T

′′′ :P′′′−−−−−−→ (B, C★) , (13.6)

where each C ∈ T , and each P is a set of probabilities. The abstraction contains the
behavior of the continuous MDP if % ∈ P at every step in Eqs. (13.5) and (13.6), see,
e.g., [JL91]. The following IMDP abstraction satisfies these requirements.

Definition 13.16 (IMDP abstraction) For conditioned MDPM |Ω = (&,�,@� , %)
and time partition Ψ of Ω, the IMDP MI = Abstract(M |Ω,Ψ) =

(
&̃, �̃, @� ,P

)
, with

states &̃ =
{
(B,Ψ(C)) : (B, C) ∈ &

}
, actions �̃ =

{
Ψ(C) : C ∈ �

}
, and uncertain

246 13 CTMCs With Imprecisely Timed Observations

transition function P defined for all (B,T) , (B′,T ′) ∈ &̃ as

P
(
(B,T) ,T ′, (B′,T ′)

)
= closure

(⋃
C ∈Ψ−1 (T),
C ′∈Ψ−1 (T′)

%
(
(B, C) , C ′, (B′, C ′)

))
,

where closure(x) = [min(G),max(G)] is the interval closure of G .

An abstraction under the coarse time partition from Fig. 13.5a is shown in Fig. 13.6a.
The transition probabilities for each MDP state are defined by transient probabilities for
the CTMC. Thus, the uncertain transition function P of the IMDP overapproximates
these transient probabilities over a range of times (as shown in Fig. 13.6b), yielding the
probability intervals for % (@) and % (@′′) shown in Fig. 13.6c.

Conditional reachability on IMDP | We show that the IMDP abstraction can be
used to obtain sound upper and lower bounds on the conditional reachability, (Ω).
Let,MI (%̃, f) ≥ 0 denote the value for the MDPMI [%̃] induced by IMDPMI under
transition function %̃ , and with scheduler f ∈ SMIstat :

,MI (%̃, f) B
∑
B∈(

PrMI [%̃]f (@� |= ♦ (B, C★)) ·F (B) . (13.7)

The next theorem, which we will prove in Sect. 13.8, is the main result of this section.

B0, 0.2 · · · B0, 0.8

(
B, T̃1

)
= (0, [0.2, 0.8])

@ @′ @′′

(a) Coarsest abstraction.

0.2 0.8

0

0.5

1

Time

Pr
ob
ab
ili
ty @ @′ @′′

(b) Transient distribution.

0 0
.2

0
.4

0
.6

0

0.2

0.4

% (@)

%
(@

′′
)

(c) Coarsest intervals.

B0, 0.2 · · · B0, 0.8

@ @′ @′′

(B, [0.2, 0.5]) (B, [0.5, 0.8])

(d) Refined abstraction.

0.2 0.8

0

0.5

1

Time

Pr
ob
ab
ili
ty @ @′ @′′

(e) Transient distribution.

0 0
.2

0
.4

0
.6

0

0.2

0.4

% (@)

%
(@

′′
)

(f) Refined intervals.

Figure 13.6: Abstraction of an infinite set of MDP states for all times C ∈ [0.2, 0.8]
into (a) a single IMDP state (B, [0.2, 0.8]) with probability intervals that
overapproximate the transient distribution (b) as the rectangular set in (c),
where the line shows the MDP transition probabilities for all C ∈ [0.2, 0.8].
The refinement (d) into two IMDP states (B, [0.2, 0.5]) and (B, [0.5, 0.8])
splits the approximation of the transient (e) into the two (less conservative)
rectangular sets in (f).

13

13.4 Abstraction of Conditioned MDPs 247

Theorem 13.17 (Bounding conditional reachability) For a given conditioned
MDPM |Ω and a time partition Ψ of Ω, letMI = Abstract(M |Ω,Ψ) be the corres-
ponding IMDP abstraction. Then, it holds that

max
f∈ŜMIstat

min
%̃∈P

,MI (%̃, f) ≤, (Ω) ≤ max
f∈ŜMIstat

max
%̃∈P

,MI (%̃, f) . (13.8)

Construction of the IMDP | We want to construct the abstract IMDP directly from
the CTMC without first constructing the continuous MDPM |Ω . Consider computing
the probability interval P((B,T) ,T ′, (B′,T ′)) for the IMDP transition from state (B,T)
to (B′,T ′). This interval is given by the minimum and maximum transient probabilities
PXB (C ′ − C) (B′) over all C ∈ T and C ′ ∈ T ′. However, the problem is that the transient
probabilities are not monotonic over time in general (as also illustrated by Figs. 13.6b
and 13.6f), so it is unclear how to compute this interval.

Instead, we compute upper and lower bounds for the transient probabilities. Let
C = min(T) and C = max(T). An upper bound on the transient probability is given by
the probability to reach B′ from B at some time C ′ − C , C ∈ T , C ′ ∈ T ′:

sup
C ∈T, C ′∈T′

PXB (C ′ − C) (B′) ≤ sup
C ∈T,C ′∈T′

PrC (B |= ♦[C,C ′]B′)

= PrC (B |= ♦[C,C
′]B′),

(13.9)

where we remark that C ′ − C is the maximal time difference. A lower bound is given
symmetrically by the transient probability to reach B′ in the CTMC at the earliest possible
time C ′ − C and staying there for the full remaining time (C ′ − C) − (C ′ − C):

inf
C ∈T, C ′∈T′

PXB (C ′ − C) (B′) ≥ PXB (C ′ − C) (B′) · PrC (B |= 2[0,(C
′−C)−(C ′−C)]B′) . (13.10)

13.4.2 Abstraction refinement
To improve the tightness of the bounds in Theorem 13.17, we propose a refinement
step that splits elements of the time partition Ψ. For example, we may split the single
abstract state in Fig. 13.6a into the two states in Fig. 13.6d.

Definition 13.18 (Refinement of time partition) Let Ψ and Ψ′ be partitions as
per Def. 13.15, for which |Ψ′ | > |Ψ|. We call Ψ′ a refinementrefinement of Ψ if for allk ′ ∈ Ψ′,
there exists ak ∈ Ψ such thatk ′ ⊆ k .

Any refinement Ψ’ of partition Ψ can be constructed by finitely many splits.
Splitting the partition refines the IMDP’s probability intervals, as also shown by

Figs. 13.6c and 13.6f. The refined IMDPMI′ = Abstract(M |Ω,Ψ′) has more states and
actions but also smaller probability intervals and thus, in general, tighter bounds in
Theorem 13.17. Repeatedly refining every element of the partition yields an IMDP
with arbitrarily many states and actions and with arbitrarily small probability intervals.
Hence, in the limit, we may recover the original continuous MDP by refinements, which
also implies that the bounds in Theorem 13.17 on the refined IMDP converge.

248 13 CTMCs With Imprecisely Timed Observations

Refinement strategy | By splitting every element of the partition Ψ, the number
of IMDP states and actions double per iteration, and the number of transitions grows
exponentially. Thus, we employ the following guided refinement strategy. At each
iteration, we extract the scheduler f★ that attains the upper bound in Theorem 13.17 and
determine the set &̃f★

reach ⊂ &̃ of reachable IMDP states. We only refine the reachable
elementsk ∈ Ψ, that is, for which there exists a C ∈ k and B ∈ (such that (B, C) ∈ &̃f★

reach.
Using this guided strategy, we iteratively shrink only the relevant probability intervals,
resulting in the same convergence behavior as the naïve strategy but without the severe
increase in abstraction size.

13.5 Bounding the Conditional Reachability
Theorem 13.17 provides bounds on the conditional reachability, (Ω) in Problem 13.4,
but computing these bounds involves optimizing over the subset of consistent schedulers.
Recall from Def. 13.8 that a consistent scheduler chooses the same actions in different
states.2 As we are not aware of any efficient algorithm to optimize over the consistent
schedulers, we compute the following straightforward bounds:

Lemma 13.19 (Bounds on Problem 13.4) Let MI = Abstract(M |Ω,Ψ) be the
IMDP abstraction for unfolded MDPM |Ω and a time partition Ψ. It holds that

, (Ω) ≤ max
f∈ŜMIstat

max
%̃∈P

,MI (%̃, f) ≤ max
f∈SMIstat

max
%̃∈P

,MI (%̃, f) .

Moreover, any consistent scheduler f̂ ∈ ŜMIstat results in a lower bound.

Obtaining lower bounds | Whilewe can use any consistent scheduler in Lemma 13.19
to compute a lower bound on, (Ω), we obtain better bounds by modifying a (potentially
non-consistent) optimal scheduler f− under the worst-case choice of probabilities, i.e.,
f− = argmax

f∈SMIstat
min%̃∈P,MI (%̃, f). First, we check the following condition in all

pairs of states (B, C) , (B′, C ′) ∈ &̃f−

reach ⊂ &̃ reachable under f− :

C = C ′ =⇒ f ((B, C)) = f ((B′, C)) ∀ (B, C) , (B′, C ′) ∈ &̃f−

reach.

Violation of this condition indicates an inconsistency in the scheduler, in which case we
change the action in one of the states to match the others. We take a greedy approach
and always adapt to the action chosen most often across all IMDP states (B, C) ∈ &̃ for
the same time C . For example, if f ((B, C)) = f ((B′, C)) ≠ f ((B′′, C)), then we only modify
f ((B′′, C)) to match the other actions. Because the set &̃f−

reach is finite by construction, a
finite number of modifications suffices to render any scheduler consistent.

Obtaining upper bounds | The set of consistent schedulers is finite but prohibitively
large, so enumerating over all consistent schedulers is infeasible. For a sound upper
bound, we instead optimize over all schedulers. The experiments in Sect. 13.6 show
that we obtain (relatively) tight bounds. To further refine these upper bounds, the
2In fact, consistent schedulers are similar to (memoryless) schedulers in partially observable MDPs
(POMDPs) that choose the same action in states with the same observation label.

13

13.6 Numerical Experiments 249

Table 13.1: Overview of considered benchmarks.

Example CTMC size State-weight function

Name Evid. len. (|Ω |) States Transit. Specification

Invent 3-14 3 4 “Prob. empty inventory within time 0.1”
Ahrs 4 74 196 “Prob. system failure within time 50”
Phil 4 34 89 “Prob. deadlock within time 1”
Tandem 2 120 363 “Prob. both queues full within time 10”
Polling 3 576 2208 “Prob. all stations empty within time 10”

literature suggests another abstraction refinement loop, which can be formulated either
directly on the imprecise evidence [CJJK19] or on the consistent schedulers [WJWJ+21].
The latter approach leverages the fact that consistent schedulers can also be modeled
as searching for (memoryless) schedulers in partially observable MDPs, where the
schedulers would only observe the time but not the state. Finally, the hardness of
optimizing over consistent schedulers in the IMDP remains open: Classical NP-hardness
results for the problems above do not carry over.

13.6 Numerical Experiments
We implemented our approach in a prototypical Python tool building on top of
Storm [HJKQ+22] for the analysis of CTMCs and IMDPs. It takes as input a CTMC C,
a specification defining the state-weight function F , and imprecisely timed evidence
Ω. The tool constructs the abstract IMDP for the coarsest time partition, computing
the probability intervals as per Eqs. (13.9) and (13.10). The bounds on the conditional
reachability in Lemma 13.19 are computed using robust value iteration. Then, the tool
applies guided refinements, as in Sect. 13.4.2, and starts a new iteration with the refined
partition. After a predefined time limit, the tool returns the lower bound, (Ω) and
upper bound, (Ω) on the conditional reachability, (Ω):

, (Ω) = min
%̃∈P

,MI (%̃, f̂) ≤, (Ω) ≤ max
f∈SMIstat

max
%̃∈P

,MI (%̃, f) =, (Ω), (13.11)

where the consistent scheduler f̂ for the lower bound is obtained by fixing all incon-
sistencies in the scheduler f− defined in Sect. 13.5. The tool can also compute minimal
conditional reachabilities (by swapping all min and max operators).

Benchmarks | We evaluate our approach on several CTMCs from the literature. For
each CTMC, we create multiple imprecisely timed evidences. Table 13.1 lists the evidence
length (i.e., the number of observed times and labels), the number of CTMC states and
transitions, and the specification of the state-weight function. More specifically, we
perform experiments on the following benchmarks:

1. Invent is the inventory model from Fig. 13.1a with the label empty if the inventory
is empty and ¬empty otherwise. The state-weight function is defined by the
probability of reaching an empty inventory within a time bound of 0.1.

250 13 CTMCs With Imprecisely Timed Observations

2. Ahrs is a dynamicfault tree fault tree model of an Active Heat Rejection System [BD05]. The
model was taken from the Ffort fault tree collection [RBNS+19] and converted into
a CTMC using Storm [VJK18]. The evidence is given by observations of the failures
of sub-systems and components, for instance, A15 and Spare5 . The state-weight
function is given by the probability of system failure within the next 50 time units.

3. Phil models a variant of the dining philosophers [Dij71] and was taken from the
QComp benchmark collection [HKPQ+19]. As evidence, we can observe for each
fork whether it is currently in use (¬fork8) or available. The state-weight function
is given by the probability of reaching a deadlock within 1 time unit.

4. Tandem models a tandem queuing network consisting of a Coxian distribution with
two phases sequentially composed with a M/M/1-queue [HMS99]. As evidence, we
observe if any of the two queues is full. The state-weight function is given by the
probability that both queues are full within 10 time units.

5. Polling models a cyclic server polling system [CT92]. One polling server handles
six stations, processing their jobs at a given rate. As evidence, we observe whether
stations are empty, i.e., have no jobs. The state-weight function is given by the
probability that all stations have no jobs within 10 time units.

Reproducibility | All experiments run on an Intel Core i5 with 8GB RAM, using
a time limit of 10 minutes. The source code, benchmarks, and logfiles to produce the
experimental results are archived at https://doi.org/10.5281/zenodo.10438984.

13.6.1 Feasibility
We investigate if our approach yields tight bounds on the weighted reachability. Fig. 13.7
shows the results for each example with different imprecise evidences. The gray area
shows the weighted reachabilities (as per Theorem 13.14) for 500 precisely timed in-
stances d ∈ Ω sampled from the imprecise evidence. Recall that theweighted reachability
, (Ω) is an upper bound to the weighted reachability for each precisely timed evidence
d ∈ Ω. Thus, the upper bound of the gray areas in Fig. 13.7, indicated as, (Ω)′, is a
lower bound of the actual (but unknown) value, (Ω). The blue lines are the upper
bound, (Ω) (solid) and lower bound, (Ω) (dashed) on, (Ω) returned by our ap-
proach over the runtime (note the log-scale). Similarly, the red lines are the bounds
obtained for minimizing the minimal weighted reachability.

Tightness of bounds | Fig. 13.7 shows that we obtain reasonably tight bounds within
a minute. In all examples, the lower bound converges close to the maximum of the
samples. The improvement is steepest at the start, indicating that the bounds can be
quickly improved by only a few refinement steps. In the long run, the improvement of
the bounds diminishes, both because each refinement takes longer, and the improvement
in each iteration gets smaller.

While not clearly visible in Fig. 13.7a, the lower bound, (Ω) (dashed blue line)
slightly exceeds the maximal sampled value, (Ω)′ (gray area) in the end. Thus, the
lower bound, (Ω) is closer to the actual weighted reachability, (Ω) than the maximal
lower bound obtained by sampling. We observed the same results when increasing the
number of samples used to compute, (Ω)′ to 10 000.

https://doi.org/10.5281/zenodo.10438984

13

13.6 Numerical Experiments 251

0.1 1 10 60 600

0.05

0.1

, (Ω)′

Time [s]

Co
nd

.r
ea
ch
.p

ro
b.

(a) Invent with evidence 1.

1 10 60 600

0.9

0.95

1

, (Ω)′

Time [s]

(b) Ahrs with evidence 1.

1 10 60 600

0.065

0.070

0.075

, (Ω)′

Time [s]

(c) Ahrs with evidence 2.

1 10 60 600
0.6

0.8

1

, (Ω)′

Time [s]

Co
nd

.r
ea
ch
.p

ro
b.

(d) Phil with evidence 1.

1 10 60 600

0

0.01

0.02

, (Ω)′

Time [s]

(e) Tandem with evidence 1.

1 10 60 600

0.65

0.70

0.75

0.80

, (Ω)′

Time [s]

(f) Polling with evidence 1.

Figure 13.7: Results for different CTMCs and different imprecisely timed evidence. The
blue lines are the upper bound, (Ω) (solid) and lower bound, (Ω) (dashed)
on, (Ω); red lines show the analogous lower bounds.

Figs. 13.7b and 13.7c show the general benefit of conditioning on evidence. While
evidence 1 for AHRS results in a state in which a system failure within the next 50 time
units is very likely, a failure conditioned on evidence 2 is very unlikely.

13.6.2 Scalability
We investigate the scalability of our approach. Table 13.2 provides the refinement
statistics, bounds, model sizes, and runtimes for all benchmarks. The refinement statistics
show the number of iterations (Iter.) and the total number of splits made in the partition.
The bounds on, (Ω) (which are the solid and dashed blue lines in Fig. 13.7) and the
IMDP sizes are both given for the final iteration. For the timings, we provide the
total time (over all iterations) and distinguish between the time spent on unfolding the
model, i.e., constructing the IMDP and analyzing it. Our approach terminates if, after
an iteration, the total run time so far exceeds the time limit of 10 minutes. The total
runtime can, therefore, be significantly longer than 10 minutes.

CTMC size | The size of the CTMC has a large impact on the total runtime. For
example, for evidence with 4 labels, we can perform up to 27 iterations for Invent (3
CTMC states) but only 6-8 for Ahrs (74 CTMC states). For Polling (576 states) with

252 13 CTMCs With Imprecisely Timed Observations

Table 13.2: Results for all benchmarks (evidence length |Ω | is given after the name).
Example Refine Results IMDP size Timings [s]

Name (|Ω |) Iter. #split Bounds on, (Ω) States Actions Transit. Unfold Analysis Total

Invent-1 (4) 25 555 [0.082536, 0.087138] 898 128307 278163 537.51 100.28 637.81
Invent-2 (4) 27 585 [0.071768, 0.078328] 1180 167917 503537 606.91 43.85 650.74
Invent-3 (9) 14 1176 [0.071757, 0.078577] 2372 369329 1107877 658.77 127.83 786.57
Invent-4 (15) 7 528 [0.070924, 0.080409] 1016 39927 115119 42.63 974.89 1017.50
Ahrs-1 (4) 6 177 [0.962041, 0.964306] 6283 282538 1415346 620.75 179.65 800.39
Ahrs-2 (4) 8 154 [0.071239, 0.072057] 727 20626 81362 577.64 69.19 646.85
Ahrs-3 (4) 6 176 [0.964936, 0.969535] 6112 280954 1334231 749.38 152.61 902.00
Ahrs-4 (4) 7 300 [0.209591, 0.213820] 7179 535763 3618439 1801.81 111.39 1913.18
Phil-1 (5) 7 339 [0.836695, 0.851548] 4122 370091 3887339 851.92 60.32 912.23
Phil-2 (5) 6 209 [0.236734, 0.246067] 4050 203549 3669721 419.97 376.73 796.70
Tandem-1 (2) 9 77 [0.003577, 0.004009] 1203 24561 362657 917.29 3.11 920.42
Tandem-2 (2) 7 80 [0.130187, 0.162762] 587 25096 75548 549.03 327.93 876.96
Polling-1 (3) 2 9 [0.731410, 0.781912] 3267 9798 2379462 348.83 2603.08 2951.89

evidence of length 2, performing 2 iterations takes nearly 50 minutes. The CTMC size
affects the unfolding, which requires computing the transient probabilities from all
states in one layer to all states in the next one. A clear example is Tandem-1 (120 CTMC
states), where nearly all time is spent on the unfolding. Furthermore, a larger CTMC
also leads to more transitions in the IMDP and, thus, can increase the analysis time. An
example is Polling-1 (576 CTMC states), where most runtime is spent in the analysis.

Length of evidence | The time per refinement step increases with the length of the
evidence. For example, for Invent-4 (with 15 labels), only 7 iterations are performed
because the resulting IMDP has 15 layers, so the value iteration becomes the bottleneck
(nearly 96% of the runtime for this example is spent on analyzing the IMDP). This
observation is consistent with experiments on unfolded MDPs in [JTS21; HJQW23],
where policy iteration-based methods lead to better results.

Caching improves performance | To reduce runtimes, we implemented caching
in our tool, which allows reusing transient probability computations. For example, if
all labels in the evidence have a time interval of the same width (which is the case for
Ahrs-1), transient probabilities are the same between layers of the unfolding. Table 13.1
shows that the unfolding times for Ahrs-1 are indeed lower than for, e.g., Ahrs-3, which
has time intervals of different widths.

Likelihood of evidence | The size of the IMDP is influenced by the number of CTMC
states corresponding to the observed labels. Less likely observations can, therefore,
mean that fewer CTMC states need to be considered in each layer. For example, the
evidence in Ahrs-2 is 17 times less likely (probability of 0.01, with 569 states) than
Ahrs-4 (probability of 0.17, with 4007 states), and as a result, the total runtime of Ahrs-2
is less than for Ahrs-4.

13.7 Related Work
Closest to our problem is work on model checking CTMCs against deterministic timed
automaton (DTA) [CHKM11; AD18; FKLX+18]. Evidence can be expressed as a single-

13

13.8 *Proofs 253

clock DTA, and tools such as MC4CSL [AD10] can calculate the weighted reachability
for precise timings. However, for imprecisely timed evidence, checking CTMCs against
DTAs yields the sum of probabilities over all instances of the evidence, whereas we are
interested in the maximal probability over all instances.

Our setting is also similar to synthesizing timeouts in CTMCs with fixed-delay trans-
itions [BKKN+15; KKR16; BDKK+19]. Finding optimal timeouts is similar to our objective
of finding an instance of the imprecisely timed evidence such that the weighted reach-
ability is maximized. While timeouts can model the time between observations, we
consider global observation times, i.e., the time between observations depends on the
previous time of observation—which cannot be modeled with timeouts.

Imprecisely timed evidence can also be expressed via multiphase timed until formulas
in continuous-time linear logic [GY22]. However, similar to DTA, conditioning and
computing the maximal weighted reachability are not supported.

Conditional probabilities naturally appear in runtimemonitoring [SSAB+19; BDDF+18]
and speech recognition [GY07], and is, e.g., studied for hiddenMarkov models [SBSG+11]
and MDPs [BKKM14; JTS21]. Approximate model checking of conditional continuous
stochastic logic for CTMCs is studied in [GXZZ13; GHZZ13] by means of a product
construction formalized as CTMC, but their algorithm is incompatible with imprecise
observation times. Conditional sampling in CTMCs is studied by [HS09], and maximum
likelihood inference of paths in CTMCs by [Per09].

The abstraction of continuous stochastic models into IMDPs is well-studied [LSAZ22].
Similar to the abstractions we developed in Part II, various papers study abstractions
of stochastic hybrid and dynamical systems into IMDPs [CA19] and relate to early
work in [JL91]. Our abstraction in Sect. 13.4 is similar to a game-based abstraction,
in which the (possibly infinite-state) model is abstracted into a two-player stochastic
game [KKNP10; HHWZ10; HNPW+11]. In particular, IMDPs are a special case of a
stochastic game in which the actions of the second player in each state only differ
in transition probabilities [NG05; Iye05]. An interesting extension is to combine our
approach with the CTMCs with uncertain transition rates in Chapter 12.

13.8 *Proofs
*Section
with details
that can
be skipped
safely

We provide the proofs of Theorems 13.11 and 13.17 presented earlier in this chapter.

13.8.1 Proof of Theorem 13.11
The proof of Theorem 13.11 is based on Lemma 13.20 below, which states that, for every
evidence instance d ∈ Ω with consistent scheduler f ∼ d , it holds that

PrC (c (C3) = B | [c |= d]) = PrMf (@� |= ♦ (B, C★) | [b |= d]). (13.12)

That is, the conditional transient probability PrC (c (C3) = B | [c |= d]) equals the
conditional reachability probabilities in Eq. (13.12) for the unfolded MDPM, under a
scheduler f ∼ d consistent to d . We then use Eq. (13.12) to rewrite Problem 13.4 as

, (Ω) = sup
d∈Ω

∑
B∈(

PrMf (@� |= ♦ (B, C★) | [b |= d]) ·F (B),

254 13 CTMCs With Imprecisely Timed Observations

where f ∼ d , as per Def. 13.8. Due to the one-to-one correspondence between choices
d ∈ Ω and consistent schedulers, we can replace the supremum over d ∈ Ω by the
supremum over consistent schedulers, which yields the expression in Theorem 13.11.

Next, we formalize the lemma that shows Eq. (13.12). In the proof of this lemma, we
use the notion of the state-trace sTrd (c) ∈ (3 of a CTMC path c onto the time points
C1, . . . , C3 of the precisely timed evidence d , which is defined as follows:

sTrd (c) =
(
c (C1), c (C2), . . . , c (C3)

)
. (13.13)

Conditional reachability probabilities in the CTMC and in the unfolded MDP are then
related as follows.

Lemma 13.20 (CTMC vs. unfolded MDP) For a CTMC C and the imprecise evid-
ence Ω, letM = Unfold(C,GΩ) be the unfolded MDP. For every instance d ∈ Ω

with corresponding consistent scheduler f ∈ ŜMstat, i.e., such that f ∼ d , it holds that

PrC (c (C3) = B | [c |= d]) = PrMf (@� |= ♦ (B, C★) | [b |= d]). (13.14)

First, let us use Bayes’ rule to rewrite the right-hand side of Eq. (13.14) as

PrMf (@� |= ♦ (B, C★) | [b |= d]) =
PrMf (@� |= ♦ (B, C★) ∩ [b |= d])

PrMf (b |= d)
. (13.15)

Wewill prove Lemma 13.20 by showing that the numerator and denominator in Eq. (13.15)
are equivalent to those in Eq. (13.1). In other words, we will show that

PrC
(
[c (C3) = B] ∩ [c |= d]

)
= PrMf

(
@� |= ♦ (B, C★) ∩ [c |= d]

)
∀B ∈ ((13.16)

PrC
(
c |= d

)
= PrMf

(
b |= d

)
, (13.17)

where f ∼ d are consistent as per Def. 13.8. We prove Eq. (13.17) first and then prove
Eq. (13.16) in a largely analogous manner.

Proof of Eq. (13.17) | From Eq. (13.1), we have for every d ∈ Ω that

PrC (c |= d) =

∫
ΠC
1(c |=d)Pr

C (c)3c = PrC (c ∈ ΠCd), (13.18)

where ΠCd = {c ∈ ΠC : c |= d} ⊂ ΠC is the subset of CTMC paths consistent with
evidence d . Let ΓCd be the set of state-traces that are consistent with evidence d :

ΓCd =
⋃
c∈ΠC

{
sTrd (c) : c |= d

}
⊆ (3 .

Let us denote (G1, . . . , G:) by G1:: for brevity. Using this notation, the preimages
sTr−1(B1:3) for all B1:3 ∈ ΓCd form a partition of ΠCd , that is:

ΠCd =
⋃

B1:3 ∈ΓCd

sTr−1d (B1:3) and sTr−1d (B1:3) ∪ sTr−1d (B′1:3) = ∅ ∀B1:3 , B
′
1:3 ∈ Γ

C
d .

13

13.8 *Proofs 255

Thus, we can rewrite Eq. (13.18) as a finite sum over all state-traces B1:3 ∈ ΓCd :

PrC (c |= d) =
∑

B1:3 ∈ΓCd

PrC
(
c ∈ ΠC : sTrd (c) = B1:3

)
.

The term PrC (c ∈ ΠC : sTrd (c) = B1:3) is the probability for a path c whose state-trace
is B1:3 . This probability is equal to the product of the appropriate transient probabilities
PXB8−1 (C8 − C8−1) (B8) for all B ∈ {1, . . . , 3}, as defined in Sect. 11.2:

PrC (c |= d) =
∑

B1:3 ∈ΓCd

3∏
8=1

PXB8−1 (C8 − C8−1) (B8)

where B0 = B� and C0 = 0. Recall from Def. 13.7 that the unfolded MDP has transition
probabilities % ((B, C) , C ′, (B′, C ′)) = PXB (C ′ − C) (B′). Hence, we obtain

PrC (c |= d) =
∑

B1:3 ∈ΓCd

3∏
8=1

%
(
(B8−1, C8−1) , C8 , (B8 , C8)

)
=

∑
B1:3 ∈ΓCd

PrMf
(
b ∈ ΠM : b = (B� , 0) , (B1, C1) , . . . , (B3 , C3)

)
.

(13.19)

A state-trace B1:3 belongs to the set of state-traces ΓCd consistent with evidence d if and
only if the associated MDP path b = (B� , 0) , (B1, C1) , . . . , (B3 , C3) ∈ ΠM is consistent with
d , i.e., b |= d . Thus, we can rewrite Eq. (13.19) as the desired expression:

PrC (c |= d) =
∑

b∈ΠM
PrMf (b) · 1(b |=d)

= PrMf (b |= d).

Proof of Eq. (13.16) | Again, using the fact that the preimages sTr−1(B1:3) for all
B1:3 ∈ ΓCd form a partition of ΠCd (where sTr is defined by Eq. (13.13)), we obtain

PrC ([c (C3) = B] ∩ [c |= d]) =∑
B1:3 ∈ΓCd

PrC
(
c ∈ ΠC : [c (C3) = B] ∩ [sTrd (c) = B1:3]

)
.

Compared to Eq. (13.16), we additionally require that c (C3) = B , which corresponds with
reaching the terminal state (B, C★) ∈ & in the unfolded MDPM corresponding with

256 13 CTMCs With Imprecisely Timed Observations

CTMC state B ∈ (. As a result, we have that

PrC ([c (C3) = B] ∩ [c |= d]) =
∑

B1:3 ∈ΓCd

3∏
8=1

%
(
(B8−1, C8−1) , C8 , (B8 , C8)

)
· 1(B3=B)

=
∑

B1:3 ∈ΓCd

PrMf
(
(B� , 0) , (B1, C1) , . . . , (B3 , C3)

)
· 1(B3=B)

=
∑

b∈ΠM
PrMf (b) · 1(b |=d) · 1(b |=♦(B,C★))

= PrMf
(
@� |= ♦ (B, C★) ∩ [c |= d]

)
,

which is the desired expression in Eq. (13.16), so we conclude the proof.

13.8.2 Proof of Theorem 13.17
Let � : & → &̃ be a function that maps every state of MDPM |Ω to a state of IMDP
MI, such that � ((B, C)) = (B,T) ∈ &̃ , where C ∈ T . The mapping � is well-defined
as &̃ represents a proper partition of & . We prove Theorem 13.17 by showing that
for every MDP state (B, C) ∈ & , the corresponding IMDP state � ((B, C)) = (B,T) ∈ &̃
overapproximates its behavior. Formally, for the conditioned MDP, take any transition
from state (B, C) ∈ & via (enabled) action C ′ ∈ �((B, C)) to state (B′, C ′) ∈ & . For any
such transition, there exists an IMDP transition (B,T) ∈ &̃ via T ′ ∈ �((B,T)) to state
(B′,T ′) ∈ &̃ such that
1. there exists %̃ ∈ P such that %

(
(B, C) , C ′, (B′, C ′)

)
= %̃

(
(B,T) ,T ′, (B′,T ′)

)
, and

2. it holds that � ((B, C)) = (B,T) ∈ &̃ and � ((B′, C ′)) = (B′,T ′) ∈ &̃ .
Observe that the converse also holds: For any IMDP transition, there exists a corres-
ponding MDP transition such that the conditions above hold. These conditions formalize
that there always exists a transition function %̃ ∈ P such that the induced MDPMI [%̃]
is a probabilistic bisimulation of the conditioned MDPM |Ω , similar as in [JL91]. Hence,
there exists a %̃ ∈ P such that

max
f∈ŜMIstat

,MI (%̃, f) =, (Ω),

leading to the upper and lower bounds in Eq. (13.8). Thus, we conclude the proof.

13.9 Discussion
We close this chapter with a brief discussion of open directions and questions about
the method presented in this chapter. In particular, a natural next step is to embed our
method in a predictive runtime monitoring framework, which introduces the challenge
of running our algorithm in real-time. Toward this goal, we identify the following
concrete challenges in further improving the applicability and scalability of the method
presented in this chapter.

1. In our IMDP abstraction, we used methods to overapproximate the union over
MDP probabilities in Def. 13.16. As a result, the performance of our method may

13

13.9 Discussion 257

be improved significantly by finding better methods to overapproximate these
probabilities. In particular, doing so may lead to tighter bounds on the weighted
reachability in Problem 13.4.

2. Recall that our theoretical results require optimizing over the subset of consistent
schedulers only. Since we are not aware of any efficient algorithm to achieve this,
we chose to optimize over all schedulers instead. As a result, the tightness of our
bounds presented in the numerical experiments in Sect. 13.6 may be improved by
optimizing over the consistent schedulers only. One promising direction to optim-
ize over consistent schedulers only is to leverage techniques recently developed
by [ACJK+21] for the synthesis of probabilistic programs.

3. The refinement strategies that we used for the IMDP are very simple and poten-
tially suboptimal. As such, investigating more sophisticated refinement strategies
that only refine parts of the abstraction where beneficial could lead to significant
reductions in the complexity of our approach.

4. Finally, the computational performance of our implementation can still be improved
significantly. One promising option to improve performance is to adapt symbolic
policy iteration [BDKK+19], which only considers small sets of candidate actions
instead of all actions.

Summary

î We have presented a method for computing reachability probabilities in
CTMCs, conditioned on evidence with imprecise observation times.

î We have shown that these conditional probabilities can be computed as
unconditional probabilities on an unfolded MDP.

î Since the unfolded MDP generally has infinitely many states and actions,
we have presented an effective and iterative abstraction into a finite IMDP.

259

Part V

Outlook

14

261

14 Tool Support
We give a brief overview of the prototypical tools we have developed as part of this
thesis. All of these tools are open-source and available as Zenodo archive and/or Git
repository. For most tools, we also provide a Docker container that can be used to
reproduce the experiments from the respective chapters.

14.1 Probabilistic model checkers
As discussed in Chapter 1, we prominently use probabilistic model checkers to analyze
(finite-state) Markov models. In particular, the two model checkers that we use are
PRISM1 and Storm.2 Both PRISM and Storm are open-source tools for the verification of
various Markov models, such as discrete-time Markov chains (DTMCs), Markov decision
processes (MDPs), and continuous-timeMarkov chains (CTMCs). Both tools also support
parametric and interval DTMCs and MDPs. PRISM and Storm can solve quantitative
verification problems for these Markov models against specifications expressed in a
variety of temporal logics, including probabilistic computation tree logic (PCTL) and
continuous stochastic logic (CSL). PRISM is implemented in Java, whereas Storm is
implemented in C++. Python bindings for Storm exist through the Python package
Stormpy.3 For more details about the functionalities and capabilities of both tools, we
refer to the respective documentation on the websites.

14.2 DynAbs
Our abstraction methods for discrete-time stochastic systems (DTSSs) presented in
Part II are implemented in a prototypical Python tool called DynAbs. The source code is
available on GitHub at https://github.com/LAVA-LAB/DynAbs and on Zenodo at
https://doi.org/10.5281/zenodo.13348782. The benchmark files provided with
DynAbs can be used to set up new benchmarks with different DTSSs and reach-avoid spe-
cifications. DynAbs supports reach-avoid specifications over finite and infinite horizons,
and stochastic linear dynamical systems with set-bounded parameter uncertainty.

Given a DTSS (possibly with set-bounded parameter uncertainty) and a reach-avoid
specification, DynAbs generates an interval Markov decision process (IMDP) abstraction,
roughly by performing the following steps:
1. Create a partition of the state space of the DTSS as the discrete IMDP states;
2. Define a set of target points on the state space of the DTSS, each of which corres-

ponds to an IMDP action;
3. Determine which IMDP actions are enabled in which IMDP states;
1https://prismmodelchecker.org/
2https://stormchecker.org/
3https://moves-rwth.github.io/stormpy/

https://github.com/LAVA-LAB/DynAbs
https://doi.org/10.5281/zenodo.13348782
https://prismmodelchecker.org/
https://stormchecker.org/
https://moves-rwth.github.io/stormpy/

262 14 Tool Support

4. Compute the transition probability intervals for each transition;
5. Export the IMDP to the input format used by PRISM.4

For a more detailed description of each step, we refer to the algorithms presented
in Chapters 6 and 7, and to the documentation of DynAbs. For detailed numerical
experiments and benchmarking, we also refer to Chapters 6 and 7.

DynAbs uses PRISM for model checking the IMDP abstractions it generates. Since
PRISM is written in Java and DynAbs in Python, communication between the tools
is currently quite inefficient. In particular, DynAbs first has to export the IMDPs in
the PRISM language and then call PRISM to perform the model checking. Thereafter,
PRISM writes the results into text files, which are loaded back into DynAbs. We remark
that this exporting and importing of files can be a significant overhead, and thus, our
implementation can still be improved significantly. For example, Storm with its Python
bindings in Stormpy could be used instead of PRISM, which would avoid the need for
writing and reading (potentially very large) model files. However, when we started
developing DynAbs, Storm did not yet support IMDPs, and hence, we built on top of
PRISM instead.

Another aspect to improve the scalability of DynAbs is by parallelizing the abstraction
generation procedure. Most of the computations in generating the IMDP abstraction
involve matrix-vector multiplications (for computing backward reachable sets), solving
linear inequalities (for computing transition probability intervals), and other linear
algebra operations. Such operations can be parallelized efficiently, and thus, the ab-
straction generation can be sped up significantly by running the code on a GPU cluster.
Parallelized construction of finite-state abstractions has previously been investigated and
implemented by the tools AMYTISS [LKSZ20] and IMPaCT [WL24] We leave extensions
of DynAbs with parallelization and GPU support for future work.

14.3 Scenario Approach for pMDPs
We implemented our method presented in Chapter 9 for sampling-based verification
of parametric Markov decision processes (pMDPs) with a distribution over the para-
meters in Python. Our implementation is available on Zenodo at https://doi.org/
10.5281/zenodo.6674059. This archive contains a Docker container to reproduce the
experiments from Chapter 9, as well as the Python source code. We provide a Docker
container to reproduce the experiments from Chapter 9.

Our implementation builds on top of Storm to verify MDPs induced by the sampled
parameter values. While the derivation of our method from Chapter 9 relies on formulat-
ing scenario optimization problems, we do not need to solve these optimization problems
explicitly in practice. Instead, as discussed in Chapter 9, the solutions to these scenario
optimization problems can be derived analytically. As a result, the implementation of
our method does not require a convex optimization solver, and the main computational
costs lie in the model checking using Storm.

4More specifically, we export the IMDPs in explicit PRISM format, which stores the states, labels, and
transitions as explicit lists in three separate files. Formore details, we refer to the PRISM documentation
on https://prismmodelchecker.org/manual/Appendices/ExplicitModelFiles.

https://doi.org/10.5281/zenodo.6674059
https://doi.org/10.5281/zenodo.6674059
https://prismmodelchecker.org/manual/Appendices/ExplicitModelFiles

14

14.4 Differentiation of pRMCs 263

14.4 Differentiation of pRMCs
A Python implementation of our methods from Chapter 10 for sensitivity analysis of
parametric (robust) Markov chains is available on GitHub at https://github.com/
LAVA-LAB/prmc-sensitivity. A Docker container to directly reproduce the exper-
imental results presented in Chapter 10 is available as a Zenodo archive at https:
//doi.org/10.5281/zenodo.7864260.

We (only) use Storm to parse the benchmark models but not for the verification of
these models. The computation of partial derivatives involves solving (potentially large)
linear systems of equations and convex optimization problems. We use the SciPy sparse
solver to solve equation systems, and we use Gurobi and its Python API via the package
GurobiPy5 for solving linear programs. While open-source optimization packages such
as CVXPY6 can also be used to solve these linear programs, we experienced better
performance when using GurobiPy directly.

One main restriction of our implementation is that we cannot handle cases where
solutions are not unique, because derivatives for these models are not well-defined.
As a practical workaround for such corner cases, we slightly perturb the parameter
values to ensure that derivatives are well-defined. However, this workaround is still
prone to numerical stability issues. Such numerical issues could be prevented by using
exact arithmetic for solving linear equation systems; however, this would restrict our
implementation to small models only.

14.5 SLURF
In Chapter 12, we presented a sampling-based verificationmethod for parametric CTMCs
(pCTMCs) with a distribution over the parameters. We implemented this method in
a Python tool called SLURF, which is available on GitHub at https://github.com/
LAVA-LAB/slurf and on Zenodo at https://doi.org/10.5281/zenodo.6523863.
The Zenodo archive contains a Docker container to directly reproduce our numerical
experiments. Roughly, given a pCTMC, a distribution over the parameters, and a set of
measures, SLURF performs the following steps:
1. Sample a set of # > 0 values for the parameters of the pCTMC;
2. For each of the # parameter samples, build the induced CTMC and compute the

corresponding solution vector;
3. Construct and solve the scenario optimization problem for the obtained # solution

vectors;
4. Return the probably approximately correct (PAC) verification result using the

theoretical results from Chapter 12.
As discussed in Chapter 12, SLURF also supports imprecise solution vectors, which are
obtained by only constructing partial CTMC models. Using imprecise solution vectors
can significantly reduce the computational costs of verifying CTMCs, at the cost of
obtaining more conservative results.

SLURF uses Storm with its Python bindings via Stormpy to verify CTMCs, and the

5https://pypi.org/project/gurobipy/
6https://cvxpy.org/

https://github.com/LAVA-LAB/prmc-sensitivity
https://github.com/LAVA-LAB/prmc-sensitivity
https://doi.org/10.5281/zenodo.7864260
https://doi.org/10.5281/zenodo.7864260
https://github.com/LAVA-LAB/slurf
https://github.com/LAVA-LAB/slurf
https://doi.org/10.5281/zenodo.6523863
https://pypi.org/project/gurobipy/
https://cvxpy.org/

264 14 Tool Support

convex optimization package CVXPY to solve scenario optimization problems. CVXPY
can be used with a variety of solvers, such as the open-source solvers ECOS and OSQP,
but also commercial solvers such as Gurobi (which we used in our experiments). By
building on top of Storm, SLURF can handle both CTMCs and dynamic fault trees
(recall that fault trees can be represented as a CTMC), which can be given in either
PRISM [KNP11] or JANI [BDHH+17] format.

14.6 Conditional Reachability in CTMCs
Finally, in Chapter 13, we presented a method for computing conditional reachability
probabilities in CTMCs. A Python implementation of this method is available as a Zen-
odo archive at https://doi.org/10.5281/zenodo.10438984. This Zenodo archive
contains a Docker container to reproduce the experiments from Chapter 13, as well as
the Python source code. As discussed in more detail in Sect. 13.6, our implementation
builds on top of Storm for the analysis of CTMCs and IMDPs. For several concrete
challenges in further improving the applicability and scalability of our implementation,
we refer back to Sect. 13.9.

https://doi.org/10.5281/zenodo.10438984

15

265

15 Conclusion and Future Work

In this thesis, we have studied quantitative verification problems for Markov models with
uncertainty. We have developed verificationmethods that can be used to provide rigorous
guarantees that are robust against the model’s uncertainty. In this final chapter, we
reflect on the challenges posed in the introduction in Chapter 1: Have our contributions
addressed these challenges, and to what extent? Thereafter, we zoom out and condense
our contributions into a set of guidelines for the verification of Markov models under
uncertainty. Based on the contributions and limitations of our work, we conclude the
thesis by discussing several directions for future research.

15.1 Summary of Contributions
In Chapter 1, we formulated four challenges that we aimed to address in this thesis:
1. Robust policy synthesis for uncertain Markov models with continuous state and

action spaces;
2. Data-driven verification of uncertain Markov models with prior knowledge;
3. Robust verification for continuous-time Markov chains with uncertainty;
4. Tool support for analyzing Markov models with uncertainty.

We discussed challenges 1–3 in Part II, III, and IV of this thesis, respectively. Furthermore,
challenge 4 was covered throughout the whole thesis, and in particular in Chapter 14.
We now discuss to what extent our contributions have addressed these challenges.

Challenge 1 | We start by reflecting on Part II, where we studied robust policy
synthesis for discrete-time stochastic systems (DTSSs). These DTSSs are indeed Markov
models with continuous state and action spaces. Furthermore, we considered two prime
sources of uncertainty for these models: (1) stochastic uncertainty modeled as noise
affecting the state transitions, and (2) set-bounded uncertainty in the model parameters.
For both settings, we have developed a tractable abstraction algorithm, which can be used
to synthesize robust policies that are guaranteed to satisfy a reach-avoid specification
with at least a certain probability. We formalized abstractions as interval Markov
decision processes (IMDPs) and showed the effectiveness of our approach on several
benchmarks. Our abstraction algorithm in Chapter 6 is, in first instance, exact and thus
provides formal guarantees on the synthesized policies. However, we thereafter turned
to a sample-based method for computing intervals on the transition probabilities, thus
leading to statistical guarantees instead.

While our contributions cover the first challenge, we must also acknowledge the
inherent limitations of our approach. In particular, abstractions are computationally
expensive to generate and their size increases exponentially with the dimension of the
state space. We discuss ideas for mitigating these limitations in Sect. 15.3.

266 15 Conclusion and Future Work

Challenge 2 | Second, in Part III, we investigated parametric Markov decision pro-
cesses (pMDPs) as models for encoding prior knowledge about transition probabilities.
In particular, we have seen that pMDPs allow for modeling dependencies between
different probabilities of the model.

In Chapter 9, we considered a setting where, in addition to a pMDP, we have access to a
probability distribution over the parameter space. We particularly used this distribution
to encode prior knowledge about the parameters.

In Chapter 10, we proposed to use partial derivatives of the polynomial function that
describes the pMDP (i.e., the solution function), as a measure of sensitivity for each of
the parameters. We showed that these partial derivatives can be used to improve the
sample efficiency of an iterative learning scheme.

Both of these methods are data-driven and lead to robust verification results with
statistical guarantees. While our contributions cover the second challenge, our methods
only apply to very particular settings. Especially the setting in Chapter 10 is quite
restrictive because we only considered models without nondeterministic action choices,
namely parametric (robust)Markov chains. Aswe have discussed in Sect. 10.8, extensions
to the more general setting of pMDPs are interesting yet challenging.

Challenge 3 | Third, in Part IV, we shifted focus tomodels evolving in continuous time
and studied continuous-time Markov chains (CTMCs) and their parametric extension.
Again, we considered two sources of uncertainty for these models.

In Chapter 12, we investigated parametric CTMCs (pCTMCs) together with a prob-
ability distribution over the parameter space (similar to the setting in Chapter 9). We
used data-driven methods from the scenario approach to obtain statistical guarantees
on the model’s behavior when sampling a random value for the parameters from the
distribution and plugging it into the model.

In Chapter 13, we considered a setting where the uncertainty is not part of the CTMC
but instead arises from imprecise observations of the model’s state. We proposed a
method to compute reachability probabilities (and other measures) for the CTMC, condi-
tioned on a set of imprecisely timed observations. These imprecisely timed observations
give rise to a set of belief distributions over the states. With our method, we can reason
robustly over this set of belief distributions.

Thus, we can conclude that our contributions in Part IV have indeed covered the third
challenge for two particular problem settings.

Challenge 4 | The final challenge we identified was to develop (prototypical) tool
support for analyzing Markov models with uncertainty. As discussed in Chapter 14,
we have developed several prototypical tools that implement the algorithms presented
in the respective chapters. Within these tools, we make use of the probabilistic model
checkers Storm [HJKQ+22] and PRISM [KNP11], as well as tools for convex optimization,
such as Gurobi [Gur23]. Our main goal was to provide fellow researchers with a basis for
further research, and we believe that we have achieved this goal. On the other hand, our
goal was not to develop full-fledged tools with, for example, graphical user interfaces.
While such more mature tools could be instrumental in the adoption of our methods in
practice, developing these tools would be very time-consuming and requires a different
set of skills. Thus, we defer the development of more mature tools to future work, as we
discuss in Sect. 15.3.

15

15.2 A Guide to Robust Verification Under Uncertainty 267

15.2 A Guide to Robust Verification Under Uncertainty
We now zoom out from the technical contributions of this thesis. Instead, we provide a
set of five guiding questions that practitioners can ask when aiming to verify a Markov
model with uncertainty. While not an exhaustive list, we hope that these guidelines
can help practitioners navigate some of the important questions that one should ask
when facing a verification problem (or a more general decision-making problem) with
uncertainty. We remark that the order of the questions is not fixed, and the importance
of each question may vary depending on the application.

1. Do you actually need guarantees?

The first and perhaps most important question to ask is whether you need guarantees
at all. In this thesis, we essentially skipped over this question, by focusing on applic-
ations where safety and/or performance guarantees are essential. However, in many
applications, it might be sufficient to have a “good enough” solution, which performs
well in practice but does not carry any guarantees. One argument is that the guarantees
we can obtain are only as good as the models of the system, the uncertainty, and the
system’s requirements. If too little is known about these models, then using a robust
approach may lead to overly conservative or even trivial solutions. In such a case, there
is little hope of obtaining any meaningful guarantees, so it might be better to forget
about formal or statistical guarantees and instead aim to find a solution that empirically
works well in practice.

2. What do you know about the model and its uncertainty?

The second question aims to decide the type of model one can use to represent the
system and its uncertainty. In particular, one can ask questions such as:

1. Are continuous states and/or actions needed to faithfully represent the system?
2. Do you need a continuous-time model, or does it suffice to make predictions over

discrete time steps?
3. What prior knowledge do you have about the uncertainty? (e.g., do you have

likelihoods of outcomes, or do you only know the set of possible values?)

If a continuous model is needed to capture the system dynamics, then one should
consider modeling the system as a DTSS and using our methods from Part II. Similarly, if
a continuous-timemodel is needed, then one can look into CTMCs and our methods from
Part IV. The combination of continuous-time and continuous-state/action models can
be modeled as a continuous-time Markov decision processes (CTMDPs) [Kat16; GH09;
BHKH05], which are not covered by this thesis. We emphasize, however, that verifying
CTMDP is extremely challenging, and existing algorithms resort to discretization to
obtain approximate optimal schedulers in practice [Kat16; BFKK+13]. Finally, depending
on the prior knowledge about the uncertainty, one can either look into set-based or
stochastic uncertainty models. In particular, if a probability distribution over the values
of the uncertain variable can be derived, then one can use our sampling-based methods
from Chapter 9 (for pMDPs) or Chapter 12 (for pCTMCs).

268 15 Conclusion and Future Work

3. What are the system requirements?

In this thesis, we focused on requirements that can be expressed as temporal logic specific-
ations. For Markov decision processes (MDPs), we considered probabilistic computation
tree logic (PCTL), while for CTMCs, we expressed requirements in continuous stochastic
logic (CSL). Furthermore, we also expressed objectives in terms of expected cumulative
rewards. However, in some applications, the requirements are much more simple. For
example, many practical control problems simply require stabilizing a system around a
given point. For such simpler requirements, the methods presented in this thesis could
be overkill and thus be unnecessarily complex. Before selecting a suitable verification
method, it is, therefore, important to ask what the system requirements are and in what
formalism you can model these requirements.

4. What type of guarantees do you need?

Besides asking whether you need guarantees at all, another important question is what
type of guarantees you need. Do you need formal (probabilistic) guarantees, or do
statistical guarantees suffice? Generally, sampling-based methods such as the scenario
approach (as in Chapters 9 and 12) can provide statistical guarantees (i.e., guarantees
that hold with a certain confidence probability). On the other hand, methods such as
abstraction (as in Chapters 6 and 13) and robust optimization (as in Chapter 10) can
often provide formal guarantees. Formal guarantees are often more conservative than
statistical guarantees and can be more computationally expensive to obtain. At the same
time, statistical guarantees leave a nonzero probability that the system actually does not
meet the requirements. Thus, statistical guarantees can lead to a significantly higher
variance in the performance of a system than formal guarantees.

5. Does your algorithm need to run online or offline?

Whether you need to apply an algorithm online or offline has great consequences for the
type of methods that are applicable. In particular, online methods (such as for runtime
monitoring or low-level control of an autonomous drone) are typically required to run
at a high frequency and thus need to be computationally inexpensive. On the other
hand, offline methods can usually be more computationally expensive because they are
applied before running a system. Generally, abstraction-based methods (such as our
abstractions of DTSSs) are computationally expensive and thus mainly suited for offline
applications. On the other hand, sample-based methods (such as the derivative-guided
learning scheme from Chapter 10) are often less expensive and thus better suited for
online applications. Thus, it is important to decide the allowed computational expenses
before choosing a suitable verification methodology.

15.3 Limitations, Challenges, and Perspectives

While the contributions of this thesis have covered the four challenges we posed, our
methods certainly have significant limitations as well. In this section, we highlight some
of these limitations and discuss potential opportunities for future work.

15

15.3 Limitations, Challenges, and Perspectives 269

15.3.1 Combining learning and verification
The abstraction-based methods presented in this thesis (and most abstraction methods in
general) can be computationally expensive. At the same time, these abstraction methods
are often quite naïve. Consider, for example, again our IMDP abstraction algorithm
for DTSSs, where we partitioned the state space and tried to model as much of the
information from the DTSS in the abstraction. However, the synthesized Markov policy
we obtain will (with very high probability) typically only visit a fraction of the states of
the IMDP abstraction. This observation raises the natural question: “Can we use learning
to narrow the search space we cover with the abstraction?”

Such combinations of learning and verification are not novel in general, such as done
in counterexample-guided inductive synthesis (CEGIS), also known as learner-verifier
approaches [AAEG+21; AEG22; CGJL+03; LZCH22; ZLHC23b]. Furthermore, the use
of machine learning algorithms to compute upper and lower bounds on reachability
probabilities in MDPs is studied by [BCCF+14; BCCF+24], and statistical model checking
with deep neural networks is explored by [GHHK+20].

To the best of our knowledge, the combination of learning and verification has not
been studied in the scope of abstractions for stochastic dynamical control systems. Our
abstraction techniques could naturally fit in an iterative framework, where a learner
tries to determine what part of the DTSS state/action spaces to focus on, and where a
verifier uses our techniques to generate an abstraction of those parts only. The main
challenge in such an approach lies in the interplay/interaction between the learner and
verifier. For example, if the verifier is not able to compute a Markov policy that solves
the problem at hand, what information (such as counterexamples or other diagnostic
information) should the verifier give back to the learner? We see such a combination of
learning and verification as a very promising direction for future research.

15.3.2 Integration with reinforcement learning
Several of the methods we proposed in this thesis involve reasoning over models that
are learned from data obtained by interacting with an (unknown) environment. As such,
these methods are closely related to model-based reinforcement learning (RL) [MBPJ23;
PN17; SLO22]. Following the terminology from [MBPJ23], the goal in model-based RL is
to learn a global solution to a problem (e.g., an optimal policy for an MDP) based on
either a learned or known model of the environment.1 In this context, several of our
methods can be seen as model-based reinforcement learning with a partially known model.
For example, in Chapter 7, we assumed a model given in the form of a DTSS (known
part of the model) with parameters that are only known up to a given set (unknown
part of the model), which we called a robust DTSS (RDTSS). Similarly, in Chapters 9
and 12, we respectively assumed that we are given a pMDP and pCTMC (known part
of the model), where the parameters are described by a fixed but unknown probability
distribution (unknown part of the model). Despite these similarities, our methods differ
from standard model-based RL in at least two conceptual aspects.

First, in this thesis, we have approached uncertainty in models from a relatively
1Whether learning an optimal policy on a known model (e.g., an MDP) should be considered as model-

based RL is a matter of debate. In our opinion, since such an optimal policy may be computed using
linear programming, we would not regard this class of problems to involve learning at all. However, a
proper discussion of this terminology is beyond our scope, so we follow [MBPJ23] for simplicity.

270 15 Conclusion and Future Work

static perspective, often assuming that a model or representation of the uncertainty is
available as a starting point. Going back to the examples above, we did not update our
belief of the uncertain parameters of a RDTSS, and we did not update the probability
distributions over the parameters of a pMDP or pCTMC. By contrast, model-based RL
commonly takes a more dynamic perspective to uncertainty, where the obtained policy
is also used to further improve the model (and vice versa) [SB98]. From this perspective,
we may argue that most of our techniques are one-shot approaches, where we aim to
provide a solution to a verification problem under uncertainty, but where we did not
update the model or the uncertainty representation based on this solution. That said, this
restriction is not inherent to our methods, and a natural next step would be to integrate
our methods in a more dynamic uncertainty setting, more similar to model-based RL.

Second, while techniques from (model-based) RL have shown impressive performance
on a wide range of complex control tasks, these methods often lack the ability to provide
formal guarantees on the obtained solutions. By contrast, our methods are designed to
provide such rigorous guarantees, at the cost of being more computationally expensive
and requiring more stringent assumptions. In response to the lack of guarantees in
RL, the field of learning-based control with formal guarantees has recently received
much attention [GF15; AOSC+16; BTSK17]. One particularly relevant technique is that
of shielding in reinforcement learning [ABEK+18; CJJT23], where the idea is to constrain
the exploration of an RL agent to a subset of safe actions generated by a reactive monitor
(called a shield). We believe that several of our techniques may naturally fit in such
a reactive monitoring framework, which can be used to provide formal guarantees in
learning-based settings.

15.3.3 Partial observability
With the exception of Chapter 13, we have assumed that all models are fully observable.
That is, we as decision-makers, or the scheduler/policy, have access to the exact state of
the model. This assumption is often unrealistic in practice. For example, an autonomous
car navigating in the real world does not know its exact position on the map; instead, it
uses sensor measurements to estimate its state [TBF05; NPCN+21]. Filtering techniques
such as the Kalman filter [Kal60; WB01] or the particle filter [TBF05; VT24; KFM04] can
be used to compute these state estimates.

Incorporating such partial knowledge of states led to the development of the partially
observable Markov decision process (POMDP) [CKL94; KLC98]. However, because sev-
eral problems for POMDPs are proven to be undecidable [MHC99; CCT16], research
has largely focused on approximate methods [PGT03; SV05; SPK13; YSHL17; KOA17].
An orthogonal research direction focuses on over/under-approximating values in POM-
DPs [Lov91; BG09; BJKQ20; BKQ22]. We believe that incorporating partial observability
in our verification methods, while retaining the rigorous guarantees we provide, can be
an interesting yet challenging avenue for further research.

15.3.4 Exploiting structure in AI
In Chapter 10, we have seen how knowledge about the underlying parametric struc-
ture of a model can be used to improve the data efficiency of learning methods. In a
much broader context, we strongly believe that using such structural information can
immensely improve the efficiency of AI methods. This can involve information about the

15

15.4 Final Remarks 271

model’s structure (as we did in Chapter 10), but also about the underlying uncertainty
or the system requirements. For example, such structure in the model and its policy are
made explicit in factored and decentralized (PO)MDPs [GKP01; GKPV03; OSV08; OA16].

Structure in the system requirements can also be exploited. The focus in reinforcement
learning has recently shifted from considering expected reward objectives only, to
considering objectives as rewardmachines [IKVM18; GB20; XGAM+20; JBBA21; IKVM22].
These reward machines allow for expressing temporal logic specifications, which thus
encode a logical structure of the underlying task at hand.

We believe that exploiting structure is needed to increase the (data-)efficiency of AI
methods. While we have not focused much on such approaches in this thesis, we still
see this as an interesting direction with high potential for future research.

15.3.5 Continuous-time models with nondeterminism
We have studied models with nondeterministic action choices, as well as models that
evolve in continuous time. However, we have not investigated their combination,
which creates a continuous-time Markov decision process (CTMDP) [Kat16; GH09;
BHKH05]. Schedulers for CTMDPs not only decide which action to play based on the
states previously visited but also on the elapsed time in every state [NSK09; Mil68].
As a result, a CTMDP has uncountable many deterministic schedulers (compared to
countably many for MDPs; see Chapter 3 for details), and existing algorithms resort to
discretization to obtain n-optimal schedulers in practice [Kat16]. Thus, developing more
sophisticated algorithms for CTMDPs poses an interesting direction for future work.

15.3.6 Mature tool support
Aswe already discussed, our focus in this thesis was on developing prototypical tools that
can be used and extended by fellow researchers. However, tomake an actual impact in the
real world, more accessible, mature, and user-friendly software is needed. As an example,
the model checker PRISM started out as a research tool that implemented algorithms for
the analysis of Markov models [KNP02]. Nowadays, the PRISM website states that “the
tool is described in over 850 research papers and has been used in industrial projects and labs.”
We see the development of such mature tool support as a key factor that determines the
societal impact of research. Hence, turning our prototypical implementations into more
mature software is an important further research direction.

15.4 Final Remarks
As a final note, we expect that rigorous reasoning about uncertainty will become increas-
ingly important in the field of artificial intelligence. As artificial intelligence models get
bigger and bigger, it becomes more and more difficult to verify that their behavior is
reliable, safe, and fair. We believe that understanding when and how we can verify these
models while obtaining rigorous and robust guarantees remains an important field of
research. Thus, much future research remains to be done. We hope that this thesis can
be a valuable source for future researchers who aspire to solve the intriguing challenges
of robust verification under uncertainty.

273

Part VI

Back Matter

A
275

A Bibliography
[AAEG+21] A. Abate, D. Ahmed, A. Edwards, M. Giacobbe and A. Peruffo. ‘FOSSIL:

a software tool for the formal synthesis of lyapunov functions and barrier
certificates using neural networks’. HSCC. ACM, 2021, 24:1–24:11. doi:
10.1145/3447928.3456646.

[AB12] H. Andersson and T. Britton. ‘Stochastic epidemic models and their statist-
ical analysis’. Volume 151. Springer Science & Business Media, 2012. doi:
10.1007/978-1-4612-1158-7.

[ABCK+18] S. Arming, E. Bartocci, K. Chatterjee, J. Katoen and A. Sokolova.
‘Parameter-Independent Strategies for pMDPs via POMDPs’. QEST. Volume
11024. Lecture Notes in Computer Science. Springer, 2018, pages 53–70.
doi: 10.1007/978-3-319-99154-2_4.

[ABEK+18] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum and U. Topcu.
‘Safe Reinforcement Learning via Shielding’. AAAI. AAAI Press, 2018,
pages 2669–2678. doi: 10.1609/AAAI.V32I1.11797.

[ABH16] K. Abbas, J. Berkhout and B. Heidergott. ‘A critical account of perturbation
analysis of Markov chains’. arXiv preprint (2016). doi: 10.48550/arXiv.
1609.04138.

[ABHK18] P. Ashok, Y. Butkova, H. Hermanns and J. Kretínský. ‘Continuous-Time
Markov Decisions Based on Partial Exploration’. ATVA. Volume 11138.
Lecture Notes in Computer Science. Springer, 2018, pages 317–334. doi:
10.1007/978-3-030-01090-4_19.

[ABRD+20] Z. Akata, D. Balliet, M. de Rijke, F. Dignum, V. Dignum, G. Eiben, A.
Fokkens, D. Grossi, K. V. Hindriks, H. H. Hoos, H. Hung, C. M. Jonker,
C. Monz, M. A. Neerincx, F. A. Oliehoek, H. Prakken, S. Schlobach, L. C.
van der Gaag, F. van Harmelen, H. van Hoof, B. van Riemsdijk, A. van
Wynsberghe, R. Verbrugge, B. Verheij, P. Vossen and M. Welling. ‘A
Research Agenda for Hybrid Intelligence: Augmenting Human Intellect With
Collaborative, Adaptive, Responsible, and Explainable Artificial Intelligence’.
Computer 53.8 (2020), pages 18–28. doi: 10.1109/MC.2020.2996587.

[ACDK+17] P. Ashok, K. Chatterjee, P. Daca, J. Kretínský and T. Meggendorfer. ‘Value
Iteration for Long-Run Average Reward in Markov Decision Processes’. CAV
(1). Volume 10426. Lecture Notes in Computer Science. Springer, 2017,
pages 201–221. doi: 10.1007/978-3-319-63387-9_10.

[ACJK+21] R. Andriushchenko, M. Ceska, S. Junges, J. Katoen and S. Stupinský.
‘PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs’. CAV
(1). Volume 12759. Lecture Notes in Computer Science. Springer, 2021,
pages 856–869. doi: 10.1007/978-3-030-81685-8_40.

https://doi.org/10.1145/3447928.3456646
https://doi.org/10.1007/978-1-4612-1158-7
https://doi.org/10.1007/978-3-319-99154-2_4
https://doi.org/10.1609/AAAI.V32I1.11797
https://doi.org/10.48550/arXiv.1609.04138
https://doi.org/10.48550/arXiv.1609.04138
https://doi.org/10.1007/978-3-030-01090-4_19
https://doi.org/10.1109/MC.2020.2996587
https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-030-81685-8_40

276 A Bibliography

[AD10] E. G. Amparore and S. Donatelli. ‘MC4CSLTA: An Efficient Model Checking
Tool for CSLTA’. QEST. IEEE Computer Society, 2010, pages 153–154. doi:
10.1109/QEST.2010.26.

[AD18] E. G. Amparore and S. Donatelli. ‘Efficient model checking of the stochastic
logic CSLTA’. Perform. Evaluation 123-124 (2018), pages 1–34. doi: 10.
1016/J.PEVA.2018.03.002.

[AEG22] A. Abate, A. Edwards and M. Giacobbe. ‘Neural Abstractions’. Advances
in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022. 2022. doi: 10.48550/arXiv.2301.
11683.

[AGKM22] C. Agarwal, S. Guha, J. Kretínský and P. Muruganandham. ‘PAC Statistical
Model Checking of Mean Payoff in Discrete- and Continuous-Time MDP’.
CAV (2). Volume 13372. Lecture Notes in Computer Science. Springer,
2022, pages 3–25. doi: 10.1007/978-3-031-13188-2_1.

[AGR24] A. Abate, M. Giacobbe and D. Roy. ‘Stochastic Omega-Regular Verifica-
tion and Control with Supermartingales’. CAV (3). Volume 14683. LNCS.
Springer, 2024, pages 395–419. doi: 10.1007/978-3-031-65633-
0_18.

[AH90] J. Aspnes and M. Herlihy. ‘Fast Randomized Consensus Using Shared
Memory’. J. Algorithms 11.3 (1990), pages 441–461. doi: 10.1016/0196-
6774(90)90021-6.

[AHKV98] R. Alur, T. A. Henzinger, O. Kupferman and M. Y. Vardi. ‘Alternating
Refinement Relations’. CONCUR. Volume 1466. Lecture Notes in Computer
Science. Springer, 1998, pages 163–178. doi: 10.1007/BFB0055622.

[AHLP00] R. Alur, T. A. Henzinger, G. Lafferriere and G. J. Pappas. ‘Discrete ab-
stractions of hybrid systems’. Proc. IEEE 88.7 (2000), pages 971–984. doi:
10.1109/5.871304.

[AKW19] P. Ashok, J. Kretínský and M. Weininger. ‘PAC Statistical Model Check-
ing for Markov Decision Processes and Stochastic Games’. CAV (1).
Volume 11561. Lecture Notes in Computer Science. Springer, 2019,
pages 497–519. doi: 10.1007/978-3-030-25540-4_29.

[All10] L. J. Allen. ‘An introduction to stochastic processes with applications to
biology’. CRC press, 2010. doi: 10.1201/b12537.

[All17] L. J. Allen. ‘A primer on stochastic epidemic models: Formulation, nu-
merical simulation, and analysis’. Infectious Disease Modelling 2.2 (2017),
pages 128–142. doi: 10.1016/j.idm.2017.03.001.

[ÅM10] K. J. Åström and R. M. Murray. ‘Feedback systems: an introduction for
scientists and engineers’. Princeton university press, 2010. doi: 10.1515/
9781400828739.

[AM90] B. D. O. Anderson and J. B. Moore. ‘Optimal control: linear quadratic
methods’. Prentice-Hall, Inc., 1990. doi: 10.5555/79089.

https://doi.org/10.1109/QEST.2010.26
https://doi.org/10.1016/J.PEVA.2018.03.002
https://doi.org/10.1016/J.PEVA.2018.03.002
https://doi.org/10.48550/arXiv.2301.11683
https://doi.org/10.48550/arXiv.2301.11683
https://doi.org/10.1007/978-3-031-13188-2_1
https://doi.org/10.1007/978-3-031-65633-0_18
https://doi.org/10.1007/978-3-031-65633-0_18
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1007/BFB0055622
https://doi.org/10.1109/5.871304
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1201/b12537
https://doi.org/10.1016/j.idm.2017.03.001
https://doi.org/10.1515/9781400828739
https://doi.org/10.1515/9781400828739
https://doi.org/10.5555/79089

A
277

[AOSC+16] D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano, J. Schulman and D.
Mané. ‘Concrete Problems in AI Safety’. CoRR abs/1606.06565 (2016). doi:
10.48550/arXiv.1606.06565.

[AP18] G. Agha and K. Palmskog. ‘A Survey of Statistical Model Checking’.
ACM Trans. Model. Comput. Simul. 28.1 (2018), 6:1–6:39. doi: 10.1145/
3158668.

[APLS08] A. Abate, M. Prandini, J. Lygeros and S. Sastry. ‘Probabilistic reachability
and safety for controlled discrete time stochastic hybrid systems’. Autom.
44.11 (2008), pages 2724–2734. doi: 10.1016/J.AUTOMATICA.2008.03.
027.

[ASSB00] A. Aziz, K. Sanwal, V. Singhal and R. Brayton. ‘Model-checking continuous-
time Markov chains’. ACM Transactions on Computational Logic 1.1 (2000),
pages 162–170. doi: 10.1145/343369.343402.

[Åst12] K. J. Åström. ‘Introduction to stochastic control theory’. Courier Cor-
poration, 2012. url: https : / / portal . research . lu . se / en /
publications/introduction-to-stochastic-control-theory-

2.
[AVLA+17] A. Ahmed, P. Varakantham, M. Lowalekar, Y. Adulyasak and P. Jaillet.

‘Sampling Based Approaches for Minimizing Regret in Uncertain Markov
Decision Processes (MDPs)’. J. Artif. Intell. Res. 59 (2017), pages 229–264.
doi: 10.1613/JAIR.5242.

[Bar18] S. Barratt. ‘On the differentiability of the solution to convex optimization
problems’. arXiv preprint (2018). doi: 10.48550/arXiv.1804.05098.

[BBC11] D. Bertsimas, D. B. Brown and C. Caramanis. ‘Theory and Applications
of Robust Optimization’. SIAM Rev. 53.3 (2011), pages 464–501. doi: 10.
1137/080734510.

[BCCF+14] T. Brázdil, K. Chatterjee, M. Chmelik, V. Forejt, J. Kretínský, M. Z. Kwi-
atkowska, D. Parker and M. Ujma. ‘Verification of Markov Decision Pro-
cesses Using Learning Algorithms’. ATVA. Volume 8837. Lecture Notes in
Computer Science. Springer, 2014, pages 98–114. doi: 10.1007/978-3-
319-11936-6_8.

[BCCF+24] T. Brázdil, K. Chatterjee, M. Chmelik, V. Forejt, J. Kretínský, M. Kwi-
atkowska, T. Meggendorfer, D. Parker and M. Ujma. ‘Learning Algorithms
for Verification of Markov Decision Processes’. CoRR abs/2403.09184 (2024).
doi: 10.48550/ARXIV.2403.09184.

[BCHT17] S. Bansal, M. Chen, S. L. Herbert and C. J. Tomlin. ‘Hamilton-Jacobi reach-
ability: A brief overview and recent advances’.CDC. IEEE, 2017, pages 2242–
2253. doi: 10.1109/CDC.2017.8263977.

[BCMJ19] E. Bøhn, E. M. Coates, S. Moe and T. A. Johansen. ‘Deep Reinforcement
Learning Attitude Control of Fixed-Wing UAVs Using Proximal Policy optim-
ization’ (2019), pages 523–533. doi: 10.1109/ICUAS.2019.8798254.

https://doi.org/10.48550/arXiv.1606.06565
https://doi.org/10.1145/3158668
https://doi.org/10.1145/3158668
https://doi.org/10.1016/J.AUTOMATICA.2008.03.027
https://doi.org/10.1016/J.AUTOMATICA.2008.03.027
https://doi.org/10.1145/343369.343402
https://portal.research.lu.se/en/publications/introduction-to-stochastic-control-theory-2
https://portal.research.lu.se/en/publications/introduction-to-stochastic-control-theory-2
https://portal.research.lu.se/en/publications/introduction-to-stochastic-control-theory-2
https://doi.org/10.1613/JAIR.5242
https://doi.org/10.48550/arXiv.1804.05098
https://doi.org/10.1137/080734510
https://doi.org/10.1137/080734510
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.48550/ARXIV.2403.09184
https://doi.org/10.1109/CDC.2017.8263977
https://doi.org/10.1109/ICUAS.2019.8798254

278 A Bibliography

[BD05] H. Boudali and J. B. Dugan. ‘A new Bayesian network approach to solve
dynamic fault trees’. Proc. of RAMS. IEEE. 2005, pages 451–456. doi: 10.
1109/RAMS.2005.1408404.

[BDDF+18] E. Bartocci, J. V. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Nick-
ovic and S. Sankaranarayanan. ‘Specification-Based Monitoring of Cyber-
Physical Systems: A Survey on Theory, Tools and Applications’. Lectures on
Runtime Verification. Volume 10457. Lecture Notes in Computer Science.
Springer, 2018, pages 135–175. doi: 10.1007/978-3-319-75632-5_5.

[BDFL+18] A. Bart, B. Delahaye, P. Fournier, D. Lime, É. Monfroy and C. Truchet.
‘Reachability in parametric Interval Markov Chains using constraints’.Theor.
Comput. Sci. 747 (2018), pages 48–74. doi: 10.1016/J.TCS.2018.06.
016.

[BDHH+17] C. E. Budde, C. Dehnert, E. M. Hahn, A. Hartmanns, S. Junges and
A. Turrini. ‘JANI: Quantitative Model and Tool Interaction’. TACAS (2).
Volume 10206. Lecture Notes in Computer Science. 2017, pages 151–168.
doi: 10.1007/978-3-662-54580-5_9.

[BDKK+19] C. Baier, C. Dubslaff, L. Korenciak, A. Kucera and V. Rehák. ‘Mean-payoff
Optimization in Continuous-time Markov Chains with Parametric Alarms’.
ACM Trans. Model. Comput. Simul. 29.4 (2019), 28:1–28:26. doi: 10.1145/
3310225.

[Bel66] R. Bellman. ‘Dynamic programming’. Science 153.3731 (1966), pages 34–37.
doi: 10.1126/science.153.3731.34.

[BFKK+13] T. Brázdil, V. Forejt, J. Krcál, J. Kretínský and A. Kucera. ‘Continuous-time
stochastic games with time-bounded reachability’. Inf. Comput. 224 (2013),
pages 46–70. doi: 10.1016/J.IC.2013.01.001.

[BG09] B. Bonet and H. Geffner. ‘Solving POMDPs: RTDP-Bel vs. Point-based
Algorithms’. IJCAI. 2009, pages 1641–1646. url: https://dl.acm.org/
doi/10.5555/1661445.1661709.

[BGHY+22] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati and A. P.
Schoellig. ‘Safe Learning in Robotics: From Learning-Based Control to Safe
Reinforcement Learning’. Annu. Rev. Control. Robotics Auton. Syst. 5 (2022),
pages 411–444. doi: 10.1146/annurev-control-042920-020211.

[BGN09] A. Ben-Tal, L. E. Ghaoui and A. Nemirovski. ‘Robust Optimization’.
Volume 28. Princeton Series in Applied Mathematics. Princeton Univer-
sity Press, 2009. doi: 10.1515/9781400831050.

[BH22] D. Bertsimas and D. den Hertog. ‘Robust and Adaptive Optimization’.
Dynamic Ideas LLC, 2022. url: https://www.dynamic-ideas.com/
books/robust-and-adaptive-optimization.

[BH97] C. Baier and H. Hermanns. ‘Weak Bisimulation for Fully Probabilistic Pro-
cesses’. CAV. Volume 1254. Lecture Notes in Computer Science. Springer,
1997, pages 119–130. doi: 10.1007/3-540-63166-6_14.

https://doi.org/10.1109/RAMS.2005.1408404
https://doi.org/10.1109/RAMS.2005.1408404
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1016/J.TCS.2018.06.016
https://doi.org/10.1016/J.TCS.2018.06.016
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1145/3310225
https://doi.org/10.1145/3310225
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1016/J.IC.2013.01.001
https://dl.acm.org/doi/10.5555/1661445.1661709
https://dl.acm.org/doi/10.5555/1661445.1661709
https://doi.org/10.1146/annurev-control-042920-020211
https://doi.org/10.1515/9781400831050
https://www.dynamic-ideas.com/books/robust-and-adaptive-optimization
https://www.dynamic-ideas.com/books/robust-and-adaptive-optimization
https://doi.org/10.1007/3-540-63166-6_14

A
279

[BHHJ+20] C. Baier, C. Hensel, L. Hutschenreiter, S. Junges, J. Katoen and J. Klein.
‘Parametric Markov chains: PCTL complexity and fraction-free Gaussian
elimination’. Inf. Comput. 272 (2020), page 104504. doi: 10.1016/J.IC.
2019.104504.

[BHHK03] C. Baier, B. R. Haverkort, H. Hermanns and J. Katoen. ‘Model-Checking
Algorithms for Continuous-Time Markov Chains’. IEEE Trans. Software Eng.
29.6 (2003), pages 524–541. doi: 10.1109/TSE.2003.1205180.

[BHKH05] C. Baier, H. Hermanns, J. Katoen and B. R. Haverkort. ‘Efficient computa-
tion of time-bounded reachability probabilities in uniform continuous-time
Markov decision processes’. Theor. Comput. Sci. 345.1 (2005), pages 2–26.
doi: 10.1016/J.TCS.2005.07.022.

[BHL19] G. Bacci, M. Hansen and K. G. Larsen. ‘Model Checking Constrained
Markov Reward Models with Uncertainties’. QEST. Volume 11785. Lec-
ture Notes in Computer Science. Springer, 2019, pages 37–51. doi: 10.
1007/978-3-030-30281-8_3.

[BHTB+18] J. Buckman, D. Hafner, G. Tucker, E. Brevdo and H. Lee. ‘Sample-Efficient
Reinforcement Learning with Stochastic Ensemble Value Expansion’. Neur-
IPS. 2018, pages 8234–8244. doi: 10.48550/arXiv.1807.01675.

[BJKQ20] A. Bork, S. Junges, J. Katoen and T. Quatmann. ‘Verification of Indefinite-
Horizon POMDPs’. ATVA. Volume 12302. Lecture Notes in Computer
Science. Springer, 2020, pages 288–304. doi: 10.1007/978-3-030-
59152-6_16.

[BJS11] M. S. Bazaraa, J. J. Jarvis and H. D. Sherali. ‘Linear programming and
network flows’. John Wiley & Sons, 2011. doi: 10.1002/9780471703778.

[BK08] C. Baier and J. Katoen. ‘Principles of model checking’. MIT Press, 2008.
url: https://mitpress.mit.edu/9780262026499/principles-
of-model-checking/.

[BKKM14] C. Baier, J. Klein, S. Klüppelholz and S. Märcker. ‘Computing Conditional
Probabilities in Markovian Models Efficiently’. TACAS. Volume 8413. Lec-
ture Notes in Computer Science. Springer, 2014, pages 515–530. doi:
10.1007/978-3-642-54862-8_43.

[BKKN+15] T. Brázdil, L. Korenciak, J. Krcál, P. Novotný and V. Rehák. ‘Optimizing
Performance of Continuous-Time Stochastic Systems Using Timeout Syn-
thesis’. QEST. Volume 9259. Lecture Notes in Computer Science. Springer,
2015, pages 141–159. doi: 10.1007/978-3-319-22264-6_10.

[BKQ22] A. Bork, J. Katoen and T. Quatmann. ‘Under-Approximating Expected
Total Rewards in POMDPs’. TACAS (2). Volume 13244. Lecture Notes in
Computer Science. Springer, 2022, pages 22–40. doi: 10.1007/978-3-
030-99527-0_2.

[BLDT+21] F. S. Barbosa, B. Lacerda, P. Duckworth, J. Tumova and N. Hawes. ‘Risk-
Aware Motion Planning in Partially Known Environments’. CDC. IEEE,
2021, pages 5220–5226. doi: 10.1109/CDC45484.2021.9683744.

https://doi.org/10.1016/J.IC.2019.104504
https://doi.org/10.1016/J.IC.2019.104504
https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1016/J.TCS.2005.07.022
https://doi.org/10.1007/978-3-030-30281-8_3
https://doi.org/10.1007/978-3-030-30281-8_3
https://doi.org/10.48550/arXiv.1807.01675
https://doi.org/10.1007/978-3-030-59152-6_16
https://doi.org/10.1007/978-3-030-59152-6_16
https://doi.org/10.1002/9780471703778
https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://doi.org/10.1007/978-3-642-54862-8_43
https://doi.org/10.1007/978-3-319-22264-6_10
https://doi.org/10.1007/978-3-030-99527-0_2
https://doi.org/10.1007/978-3-030-99527-0_2
https://doi.org/10.1109/CDC45484.2021.9683744

280 A Bibliography

[BLM13] S. Boucheron, G. Lugosi and P. Massart. ‘Concentration Inequalities - A
Nonasymptotic Theory of Independence’. Oxford University Press, 2013.
doi: 10.1093/ACPROF:OSO/9780199535255.001.0001.

[BMS16] L. Bortolussi, D. Milios and G. Sanguinetti. ‘Smoothed model checking
for uncertain Continuous-Time Markov Chains’. Inf. Comput. 247 (2016),
pages 235–253. doi: 10.1016/J.IC.2016.01.004.

[BOBW10] L. Blackmore, M. Ono, A. Bektassov and B. C. Williams. ‘A Probabilistic
Particle-Control Approximation of Chance-Constrained Stochastic Predictive
Control’. IEEE Trans. Robotics 26.3 (2010), pages 502–517. doi: 10.1109/
TRO.2010.2044948.

[Box76] G. E. P. Box. ‘Science and Statistics’. Journal of the American Statistical
Association 71.356 (1976), pages 791–799. doi: 10.1080/01621459.
1976.10480949.

[BR07] V. I. Bogachev and M. A. S. Ruas. ‘Measure theory’. Volume 1. Springer,
2007. doi: 10.1007/978-3-540-34514-5.

[BS18] L. Bortolussi and S. Silvetti. ‘Bayesian Statistical Parameter Synthesis for
Linear Temporal Properties of Stochastic Models’. TACAS (2). Volume 10806.
Lecture Notes in Computer Science. Springer, 2018, pages 396–413. doi:
10.1007/978-3-319-89963-3_23.

[BS78] D. P. Bertsekas and S. E. Shreve. ‘Stochastic Optimal Control: The Discrete-
time Case’. Athena Scientific, 1978, page 330. url: https://web.mit.
edu/dimitrib/www/soc.html.

[BSJJ24] E. M. Bovy, M. Suilen, S. Junges and N. Jansen. ‘Imprecise Probabilities
Meet Partial Observability: Game Semantics for Robust POMDPs’. CoRR
abs/2405.04941 (2024). doi: 10.48550/arXiv.2405.04941.

[BT02] R. I. Brafman and M. Tennenholtz. ‘R-MAX - A General Polynomial Time
Algorithm for Near-Optimal Reinforcement Learning’. J. Mach. Learn. Res.
3 (2002), pages 213–231. doi: 10.1162/153244303765208377.

[BTSK17] F. Berkenkamp, M. Turchetta, A. P. Schoellig and A. Krause. ‘Safe Model-
based Reinforcement Learning with Stability Guarantees’. NIPS. 2017,
pages 908–918. doi: 10.48550/arXiv.1705.08551.

[BV14] S. P. Boyd and L. Vandenberghe. ‘Convex Optimization’. Cambridge Uni-
versity Press, 2014. doi: 10.1017/CBO9780511804441.

[BYG17] C. Belta, B. Yordanov and E. A. Gol. ‘Formal methods for discrete-time
dynamical systems’. Volume 15. Springer, 2017. doi: 10.1007/978-3-
319-50763-7.

[CA19] N. Cauchi and A. Abate. ‘StocHy: Automated Verification and Synthesis of
Stochastic Processes’. TACAS (2). Volume 11428. Lecture Notes in Computer
Science. Springer, 2019, pages 247–264. doi: 10.1007/978-3-030-
17465-1_14.

[CB21] G. Casella and R. L. Berger. ‘Statistical inference’. Cengage Learning, 2021.
doi: 10.1201/9781003456285.

https://doi.org/10.1093/ACPROF:OSO/9780199535255.001.0001
https://doi.org/10.1016/J.IC.2016.01.004
https://doi.org/10.1109/TRO.2010.2044948
https://doi.org/10.1109/TRO.2010.2044948
https://doi.org/10.1080/01621459.1976.10480949
https://doi.org/10.1080/01621459.1976.10480949
https://doi.org/10.1007/978-3-540-34514-5
https://doi.org/10.1007/978-3-319-89963-3_23
https://web.mit.edu/dimitrib/www/soc.html
https://web.mit.edu/dimitrib/www/soc.html
https://doi.org/10.48550/arXiv.2405.04941
https://doi.org/10.1162/153244303765208377
https://doi.org/10.48550/arXiv.1705.08551
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1007/978-3-030-17465-1_14
https://doi.org/10.1007/978-3-030-17465-1_14
https://doi.org/10.1201/9781003456285

A
281

[CBSN+16] R. C. Cavalcante, R. C. Brasileiro, V. L. F. Souza, J. P. Nóbrega and A. L. I.
Oliveira. ‘Computational Intelligence and Financial Markets: A Survey
and Future Directions’. Expert Syst. Appl. 55 (2016), pages 194–211. doi:
10.1016/J.ESWA.2016.02.006.

[CC05] G. C. Calafiore and M. C. Campi. ‘Uncertain convex programs: randomized
solutions and confidence levels’. Math. Program. 102.1 (2005), pages 25–46.
doi: 10.1007/S10107-003-0499-Y.

[CC06] G. C. Calafiore and M. C. Campi. ‘The scenario approach to robust control
design’. IEEE Trans. Autom. Control. 51.5 (2006), pages 742–753. doi: 10.
1109/TAC.2006.875041.

[CC97] X. Cao and H. Chen. ‘Perturbation realization, potentials, and sensitivity
analysis of Markov processes’. IEEE Trans. Autom. Control. 42.10 (1997),
pages 1382–1393. doi: 10.1109/9.633827.

[CCG21] M. C. Campi, A. Carè and S. Garatti. ‘The scenario approach: A tool at
the service of data-driven decision making’. Annu. Rev. Control. 52 (2021),
pages 1–17. doi: 10.1016/J.ARCONTROL.2021.10.004.

[CCGK+18] R. Calinescu, M. Ceska, S. Gerasimou, M. Kwiatkowska and N. Paoletti.
‘Efficient synthesis of robust models for stochastic systems’. J. Syst. Softw.
143 (2018), pages 140–158. doi: 10.1016/J.JSS.2018.05.013.

[CCT16] K. Chatterjee, M. Chmelik andM. Tracol. ‘What is decidable about partially
observable Markov decision processes with l-regular objectives’. J. Comput.
Syst. Sci. 82.5 (2016), pages 878–911. doi: 10.1016/J.JCSS.2016.02.
009.

[CDPK+17] M. Ceska, F. Dannenberg, N. Paoletti, M. Kwiatkowska and L. Brim. ‘Pre-
cise parameter synthesis for stochastic biochemical systems’. Acta Informat-
ica 54.6 (2017), pages 589–623. doi: 10.1007/S00236-016-0265-2.

[CE15] S. N. Cohen and R. J. Elliott. ‘Stochastic calculus and applications’. Volume 2.
Springer, 2015. doi: 10.1007/978-1-4939-2867-5.

[CFRS14] T. Chen, Y. Feng, D. S. Rosenblum and G. Su. ‘Perturbation Analysis in
Verification of Discrete-Time Markov Chains’. CONCUR. Volume 8704.
Lecture Notes in Computer Science. Springer, 2014, pages 218–233. doi:
10.1007/978-3-662-44584-6_16.

[CG08] M. C. Campi and S. Garatti. ‘The Exact Feasibility of Randomized Solutions
of Uncertain Convex Programs’. SIAM J. Optim. 19.3 (2008), pages 1211–
1230. doi: 10.1137/07069821X.

[CG11] M. C. Campi and S. Garatti. ‘A Sampling-and-Discarding Approach to
Chance-Constrained Optimization: Feasibility and Optimality’. J. Optim.
Theory Appl. 148.2 (2011), pages 257–280. doi: 10.1007/S10957-010-
9754-6.

[CG18a] M. C. Campi and S. Garatti. ‘Introduction to the scenario approach’. SIAM,
2018. doi: 10.1137/1.9781611975444.

https://doi.org/10.1016/J.ESWA.2016.02.006
https://doi.org/10.1007/S10107-003-0499-Y
https://doi.org/10.1109/TAC.2006.875041
https://doi.org/10.1109/TAC.2006.875041
https://doi.org/10.1109/9.633827
https://doi.org/10.1016/J.ARCONTROL.2021.10.004
https://doi.org/10.1016/J.JSS.2018.05.013
https://doi.org/10.1016/J.JCSS.2016.02.009
https://doi.org/10.1016/J.JCSS.2016.02.009
https://doi.org/10.1007/S00236-016-0265-2
https://doi.org/10.1007/978-1-4939-2867-5
https://doi.org/10.1007/978-3-662-44584-6_16
https://doi.org/10.1137/07069821X
https://doi.org/10.1007/S10957-010-9754-6
https://doi.org/10.1007/S10957-010-9754-6
https://doi.org/10.1137/1.9781611975444

282 A Bibliography

[CG18b] M. C. Campi and S. Garatti. ‘Wait-and-judge scenario optimization’. Math.
Program. 167.1 (2018), pages 155–189. doi: 10.1007/S10107-016-1056-
9.

[CG20] M. C. Campi and S. Garatti. ‘Scenario optimization with relaxation: a new
tool for design and application to machine learning problems’. CDC. IEEE,
2020, pages 2463–2468. doi: 10.1109/CDC42340.2020.9303914.

[CGJL+03] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith. ‘Counterexample-
guided abstraction refinement for symbolic model checking’. J. ACM 50.5
(2003), pages 752–794. doi: 10.1145/876638.876643.

[CGJP+16] R. Calinescu, C. Ghezzi, K. Johnson, M. Pezzè, Y. Rafiq and G. Tamburrelli.
‘Formal Verification With Confidence Intervals to Establish Quality of
Service Properties of Software Systems’. IEEE Trans. Reliab. 65.1 (2016),
pages 107–125. doi: 10.1109/TR.2015.2452931.

[CGLT+21] L. Cardelli, R. Grosu, K. G. Larsen, M. Tribastone, M. Tschaikowski and
A. Vandin. ‘Lumpability for Uncertain Continuous-Time Markov Chains’.
QEST. Volume 12846. Lecture Notes in Computer Science. Springer, 2021,
pages 391–409. doi: 10.1007/978-3-030-85172-9_21.

[CGP09] M. C. Campi, S. Garatti andM. Prandini. ‘The scenario approach for systems
and control design’. Annu. Rev. Control. 33.2 (2009), pages 149–157. doi:
10.1016/J.ARCONTROL.2009.07.001.

[CH08] K. Chatterjee and T. A. Henzinger. ‘Value Iteration’. 25 Years of Model
Checking. Volume 5000. Lecture Notes in Computer Science. Springer,
2008, pages 107–138. doi: 10.1007/978-3-540-69850-0_7.

[CHHK+13] T. Chen, E. M. Hahn, T. Han, M. Z. Kwiatkowska, H. Qu and L. Zhang.
‘Model Repair forMarkov Decision Processes’. TASE. IEEE Computer Society,
2013, pages 85–92. doi: 10.1109/TASE.2013.20.

[CHKM11] T. Chen, T. Han, J. Katoen and A.Mereacre. ‘Model Checking of Continuous-
Time Markov Chains Against Timed Automata Specifications’. Log. Methods
Comput. Sci. 7.1 (2011). doi: 10.2168/LMCS-7(1:12)2011.

[Cho19] V. Chonev. ‘Reachability in Augmented Interval Markov Chains’. RP.
Volume 11674. Lecture Notes in Computer Science. Springer, 2019,
pages 79–92. doi: 10.1007/978-3-030-30806-3_7.

[CHQ08] G. D. Cooman, F. Hermans and E. Quaeghebeur. ‘Sensitivity analysis for
finite Markov chains in discrete time’. UAI. AUAI Press, 2008, pages 129–
136. doi: 1854/11638.

[CJJK+17] M. Cubuktepe, N. Jansen, S. Junges, J. Katoen, I. Papusha, H. A. Poon-
awala and U. Topcu. ‘Sequential Convex Programming for the Efficient
Verification of Parametric MDPs’. TACAS (2). Volume 10206. Lecture Notes
in Computer Science. 2017, pages 133–150. doi: 10.1007/978-3-662-
54580-5_8.

https://doi.org/10.1007/S10107-016-1056-9
https://doi.org/10.1007/S10107-016-1056-9
https://doi.org/10.1109/CDC42340.2020.9303914
https://doi.org/10.1145/876638.876643
https://doi.org/10.1109/TR.2015.2452931
https://doi.org/10.1007/978-3-030-85172-9_21
https://doi.org/10.1016/J.ARCONTROL.2009.07.001
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1109/TASE.2013.20
https://doi.org/10.2168/LMCS-7(1:12)2011
https://doi.org/10.1007/978-3-030-30806-3_7
https://doi.org/1854/11638
https://doi.org/10.1007/978-3-662-54580-5_8
https://doi.org/10.1007/978-3-662-54580-5_8

A
283

[CJJK+18] M. Cubuktepe, N. Jansen, S. Junges, J. Katoen and U. Topcu. ‘Synthesis in
pMDPs: A Tale of 1001 Parameters’. ATVA. Volume 11138. Lecture Notes
in Computer Science. Springer, 2018, pages 160–176. doi: 10.1007/978-
3-030-01090-4_10.

[CJJK+20] M. Cubuktepe, N. Jansen, S. Junges, J. Katoen and U. Topcu. ‘Scenario-
Based Verification of Uncertain MDPs’. TACAS (1). Volume 12078. Lecture
Notes in Computer Science. Springer, 2020, pages 287–305. doi: 10.1007/
978-3-030-45190-5_16.

[CJJK+22] M. Cubuktepe, N. Jansen, S. Junges, J. Katoen and U. Topcu. ‘Convex
Optimization for Parameter Synthesis in MDPs’. IEEE Trans. Autom. Control.
67.12 (2022), pages 6333–6348. doi: 10.1109/TAC.2021.3133265.

[CJJK19] M. Ceska, N. Jansen, S. Junges and J. Katoen. ‘Shepherding Hordes of
Markov Chains’. TACAS (2). Volume 11428. Lecture Notes in Computer
Science. Springer, 2019, pages 172–190. doi: 10.1007/978-3-030-
17465-1_10.

[CJJM+21] M. Cubuktepe, N. Jansen, S. Junges, A. Marandi, M. Suilen and U. Topcu.
‘Robust Finite-State Controllers for Uncertain POMDPs’. AAAI. AAAI Press,
2021, pages 11792–11800. doi: 10.1609/AAAI.V35I13.17401.

[CJJT23] S. Carr, N. Jansen, S. Junges and U. Topcu. ‘Safe Reinforcement Learn-
ing via Shielding under Partial Observability’. AAAI. AAAI Press, 2023,
pages 14748–14756. doi: 10.1609/AAAI.V37I12.26723.

[CKL94] A. R. Cassandra, L. P. Kaelbling and M. L. Littman. ‘Acting Optimally in
Partially Observable Stochastic Domains’. AAAI. AAAI Press / The MIT
Press, 1994, pages 1023–1028. url: https://cdn.aaai.org/AAAI/
1994/AAAI94-157.pdf.

[CLLA+19] N. Cauchi, L. Laurenti, M. Lahijanian, A. Abate, M. Kwiatkowska and
L. Cardelli. ‘Efficiency through uncertainty: scalable formal synthesis for
stochastic hybrid systems’. HSCC. ACM, 2019, pages 240–251. doi: 10.
1145/3302504.3311805.

[CLZ97] A. R. Cassandra, M. L. Littman and N. L. Zhang. ‘Incremental Pruning:
A Simple, Fast, Exact Method for Partially Observable Markov Decision
Processes’. UAI. Morgan Kaufmann, 1997, pages 54–61. doi: 10.48550/
arXiv.1302.1525.

[COB21] G. Chou, N. Ozay and D. Berenson. ‘Model Error Propagation via Learned
Contraction Metrics for Safe Feedback Motion Planning of Unknown Sys-
tems’. CDC. IEEE, 2021, pages 3576–3583. doi: 10.1109/CDC45484.
2021.9683354.

[ÇOK22] M. M. Çelikok, F. A. Oliehoek and S. Kaski. ‘Best-Response Bayesian Re-
inforcement Learning with Bayes-adaptive POMDPs for Centaurs’. AA-
MAS. International Foundation for Autonomous Agents and Multiagent
Systems (IFAAMAS), 2022, pages 235–243. doi: 10.5555/3535850.
3535878.

https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-030-45190-5_16
https://doi.org/10.1007/978-3-030-45190-5_16
https://doi.org/10.1109/TAC.2021.3133265
https://doi.org/10.1007/978-3-030-17465-1_10
https://doi.org/10.1007/978-3-030-17465-1_10
https://doi.org/10.1609/AAAI.V35I13.17401
https://doi.org/10.1609/AAAI.V37I12.26723
https://cdn.aaai.org/AAAI/1994/AAAI94-157.pdf
https://cdn.aaai.org/AAAI/1994/AAAI94-157.pdf
https://doi.org/10.1145/3302504.3311805
https://doi.org/10.1145/3302504.3311805
https://doi.org/10.48550/arXiv.1302.1525
https://doi.org/10.48550/arXiv.1302.1525
https://doi.org/10.1109/CDC45484.2021.9683354
https://doi.org/10.1109/CDC45484.2021.9683354
https://doi.org/10.5555/3535850.3535878
https://doi.org/10.5555/3535850.3535878

284 A Bibliography

[CP34] C. J. Clopper and E. S. Pearson. ‘The use of confidence or fiducial limits
illustrated in the case of the binomial’. Biometrika 26.4 (1934), pages 404–
413. doi: 10.2307/2331986.

[CPM23] R. Coppola, A. Peruffo and M. Mazo Jr. ‘Data-Driven Abstractions for
Verification of Linear Systems’. IEEE Control. Syst. Lett. 7 (2023), pages 2737–
2742. doi: 10.1109/LCSYS.2023.3288731.

[CRLH23] C. Costen, M. Rigter, B. Lacerda and N. Hawes. ‘Planning with Hidden
Parameter Polynomial MDPs’.AAAI. AAAI Press, 2023, pages 11963–11971.
doi: 10.1609/AAAI.V37I10.26411.

[CS07] T. R. Colburn and G. M. Shute. ‘Abstraction in Computer Science’. Minds
Mach. 17.2 (2007), pages 169–184. doi: 10.1007/S11023-007-9061-7.

[CSKG22] B. Charpentier, R. Senanayake, M. J. Kochenderfer and S. Günnemann.
‘Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement Learn-
ing’. CoRR abs/2206.01558 (2022). doi: 10.48550/arXiv.2206.01558.

[CT92] H. Choi and K. S. Trivedi. ‘Approximate Performance Models of Polling
Systems Using Stochastic Petri Nets’. INFOCOM. IEEE Computer Society,
1992, pages 2306–2314. doi: 10.1109/INFCOM.1992.263520.

[CT96] G. Ciardo andM. Tilgner. ‘On the use of Kronecker operators for the solution
of generalized stochastic Petri nets’ (1996). url: https://ntrs.nasa.
gov/citations/20040110963.

[CW98] X. Cao and Y. Wan. ‘Algorithms for sensitivity analysis of Markov systems
through potentials and perturbation realization’. IEEE Trans. Control. Syst.
Technol. 6.4 (1998), pages 482–494. doi: 10.1109/87.701341.

[Dav18] M. H. Davis. ‘Markov models & optimization’. Routledge, 2018. doi: 10.
1201/9780203748039.

[Daw04] C. Daws. ‘Symbolic and Parametric Model Checking of Discrete-Time
Markov Chains’. ICTAC. Volume 3407. Lecture Notes in Computer Science.
Springer, 2004, pages 280–294. doi: 10.1007/978-3-540-31862-0_21.

[DBB18] N. M. van Dijk, S. P. J. van Brummelen and R. J. Boucherie. ‘Uniformiza-
tion: Basics, extensions and applications’. Perform. Evaluation 118 (2018),
pages 8–32. doi: 10.1016/J.PEVA.2017.09.008.

[DCB13] A. Domahidi, E. Chu and S. P. Boyd. ‘ECOS: An SOCP solver for embedded
systems’. ECC. IEEE, 2013, pages 3071–3076. doi: 10.23919/ECC.2013.
6669541.

[DDNZ00] M. S. DeQueiroz, D. M. Dawson, S. P. Nagarkatti and F. Zhang. ‘Lyapunov-
based control of mechanical systems’. Springer Science & Business Media,
2000. doi: 10.1007/978-1-4612-1352-9.

[Del15] B. Delahaye. ‘Consistency for Parametric Interval Markov Chains’. SynCoP.
Volume 44. OASIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2015, pages 17–32. doi: 10.4230/OASICS.SYNCOP.2015.17.

https://doi.org/10.2307/2331986
https://doi.org/10.1109/LCSYS.2023.3288731
https://doi.org/10.1609/AAAI.V37I10.26411
https://doi.org/10.1007/S11023-007-9061-7
https://doi.org/10.48550/arXiv.2206.01558
https://doi.org/10.1109/INFCOM.1992.263520
https://ntrs.nasa.gov/citations/20040110963
https://ntrs.nasa.gov/citations/20040110963
https://doi.org/10.1109/87.701341
https://doi.org/10.1201/9780203748039
https://doi.org/10.1201/9780203748039
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1016/J.PEVA.2017.09.008
https://doi.org/10.23919/ECC.2013.6669541
https://doi.org/10.23919/ECC.2013.6669541
https://doi.org/10.1007/978-1-4612-1352-9
https://doi.org/10.4230/OASICS.SYNCOP.2015.17

A
285

[DEP02] J. Desharnais, A. Edalat and P. Panangaden. ‘Bisimulation for Labelled
Markov Processes’. Inf. Comput. 179.2 (2002), pages 163–193. doi: 10.
1006/INCO.2001.2962.

[DGJP04] J. Desharnais, V. Gupta, R. Jagadeesan and P. Panangaden. ‘Metrics for
labelled Markov processes’. Theor. Comput. Sci. 318.3 (2004), pages 323–354.
doi: 10.1016/J.TCS.2003.09.013.

[DHDU18] S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez and S. Udluft. ‘De-
composition of Uncertainty in Bayesian Deep Learning for Efficient and
Risk-sensitive Learning’. ICML. Volume 80. Proceedings of Machine Learn-
ing Research. PMLR, 2018, pages 1192–1201. doi: 10.48550/arXiv.
1710.07283.

[DHK15] F. Dannenberg, E. M. Hahn and M. Z. Kwiatkowska. ‘Computing Cumu-
lative Rewards Using Fast Adaptive Uniformization’. ACM Trans. Model.
Comput. Simul. 25.2 (2015), 9:1–9:23. doi: 10.1145/2688907.

[DHKP17] P. Daca, T. A. Henzinger, J. Kretínský and T. Petrov. ‘Faster Statistical
Model Checking for Unbounded Temporal Properties’. ACM Trans. Comput.
Log. 18.2 (2017), 12:1–12:25. doi: 10.1145/3060139.

[DHS18] P. R. D’Argenio, A. Hartmanns and S. Sedwards. ‘Lightweight Statist-
ical Model Checking in Nondeterministic Continuous Time’. ISoLA (2).
Volume 11245. Lecture Notes in Computer Science. Springer, 2018,
pages 336–353. doi: 10.1007/978-3-030-03421-4_22.

[Die17] T. G. Dietterich. ‘Steps Toward Robust Artificial Intelligence’. AI Mag. 38.3
(2017), pages 3–24. doi: 10.1609/AIMAG.V38I3.2756.

[Dij71] E. W. Dijkstra. ‘Hierarchical Ordering of Sequential Processes’. Acta Inform-
atica 1 (1971), pages 115–138. doi: 10.1007/BF00289519.

[DJJC+15] C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.
Katoen and E. Ábrahám. ‘PROPhESY: A PRObabilistic ParamEter SYnthesis
Tool’. CAV (1). Volume 9206. Lecture Notes in Computer Science. Springer,
2015, pages 214–231. doi: 10.1007/978-3-319-21690-4_13.

[DJJL01] P. R. D’Argenio, B. Jeannet, H. E. Jensen and K. G. Larsen. ‘Reachabil-
ity Analysis of Probabilistic Systems by Successive Refinements’. PAPM-
PROBMIV. Volume 2165. Lecture Notes in Computer Science. Springer,
2001, pages 39–56. doi: 10.1007/3-540-44804-7_3.

[DJKV17] C. Dehnert, S. Junges, J. Katoen andM. Volk. ‘A Storm is Coming: AModern
Probabilistic Model Checker’. CAV (2). Volume 10427. Lecture Notes in
Computer Science. Springer, 2017, pages 592–600. doi: 10.1007/978-3-
319-63390-9_31.

[DLLM+11] A. David, K. G. Larsen, A. Legay, M. Mikucionis and Z. Wang. ‘Time
for Statistical Model Checking of Real-Time Systems’. CAV. Volume 6806.
Lecture Notes in Computer Science. Springer, 2011, pages 349–355. doi:
10.1007/978-3-642-22110-1_27.

https://doi.org/10.1006/INCO.2001.2962
https://doi.org/10.1006/INCO.2001.2962
https://doi.org/10.1016/J.TCS.2003.09.013
https://doi.org/10.48550/arXiv.1710.07283
https://doi.org/10.48550/arXiv.1710.07283
https://doi.org/10.1145/2688907
https://doi.org/10.1145/3060139
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1609/AIMAG.V38I3.2756
https://doi.org/10.1007/BF00289519
https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/3-540-44804-7_3
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-22110-1_27

286 A Bibliography

[DLLM+15] A. David, K. G. Larsen, A. Legay, M. Mikucionis and D. B. Poulsen. ‘Uppaal
SMC tutorial’. Int. J. Softw. Tools Technol. Transf. 17.4 (2015), pages 397–
415. doi: 10.1007/S10009-014-0361-Y.

[DLP16] B. Delahaye, D. Lime and L. Petrucci. ‘Parameter Synthesis for Parametric
Interval Markov Chains’. VMCAI. Volume 9583. Lecture Notes in Computer
Science. Springer, 2016, pages 372–390. doi: 10.1007/978-3-662-
49122-5_18.

[Dry43] H. L. Dryden. ‘A review of the statistical theory of turbulence’. Quarterly
of Applied Mathematics 1.1 (1943), pages 7–42. url: https : / / www .
ams.org/journals/qam/1943-01-01/S0033-569X-1943-08209-

8/S0033-569X-1943-08209-8.pdf.
[Dur10] R. Durrett. ‘Probability: Theory and Examples, 4th Edition’. Cambridge

University Press, 2010. doi: 10.1017/CBO9780511779398.
[ECL11] P. M. Esfahani, D. Chatterjee and J. Lygeros. ‘On a problem of stochastic

reach-avoid set characterization’. CDC/ECC. IEEE, 2011, pages 7069–7074.
doi: 10.1109/CDC.2011.6160403.

[EK18] P. M. Esfahani and D. Kuhn. ‘Data-driven distributionally robust optim-
ization using the Wasserstein metric: performance guarantees and tract-
able reformulations’. Math. Program. 171.1-2 (2018), pages 115–166. doi:
10.1007/S10107-017-1172-1.

[ESL15] P. M. Esfahani, T. Sutter and J. Lygeros. ‘Performance Bounds for the
Scenario Approach and an Extension to a Class of Non-Convex Programs’.
IEEE Trans. Autom. Control. 60.1 (2015), pages 46–58. doi: 10.1109/TAC.
2014.2330702.

[FCGA21] X. Fang, R. Calinescu, S. Gerasimou and F. Alhwikem. ‘Fast Paramet-
ric Model Checking through Model Fragmentation’. ICSE. IEEE, 2021,
pages 835–846. doi: 10.1109/ICSE43902.2021.00081.

[FCTS15] J. F. Fisac, M. Chen, C. J. Tomlin and S. S. Sastry. ‘Reach-avoid problems
with time-varying dynamics, targets and constraints’. HSCC. ACM, 2015,
pages 11–20. doi: 10.1145/2728606.2728612.

[FH94] M. C. Fu and J. Hu. ‘Smoothed perturbation analysis derivative estimation
for Markov chains’. Oper. Res. Lett. 15.5 (1994), pages 241–251. doi: 10.
1016/0167-6377(94)90084-1.

[FHHW+11] M. Fränzle, E. M. Hahn, H. Hermanns, N. Wolovick and L. Zhang. ‘Meas-
urability and safety verification for stochastic hybrid systems’. HSCC. ACM,
2011, pages 43–52. doi: 10.1145/1967701.1967710.

[FKLX+18] Y. Feng, J. Katoen, H. Li, B. Xia and N. Zhan. ‘Monitoring CTMCs by
Multi-clock Timed Automata’. CAV (1). Volume 10981. Lecture Notes in
Computer Science. Springer, 2018, pages 507–526. doi: 10.1007/978-3-
319-96145-3_27.

https://doi.org/10.1007/S10009-014-0361-Y
https://doi.org/10.1007/978-3-662-49122-5_18
https://doi.org/10.1007/978-3-662-49122-5_18
https://www.ams.org/journals/qam/1943-01-01/S0033-569X-1943-08209-8/S0033-569X-1943-08209-8.pdf
https://www.ams.org/journals/qam/1943-01-01/S0033-569X-1943-08209-8/S0033-569X-1943-08209-8.pdf
https://www.ams.org/journals/qam/1943-01-01/S0033-569X-1943-08209-8/S0033-569X-1943-08209-8.pdf
https://doi.org/10.1017/CBO9780511779398
https://doi.org/10.1109/CDC.2011.6160403
https://doi.org/10.1007/S10107-017-1172-1
https://doi.org/10.1109/TAC.2014.2330702
https://doi.org/10.1109/TAC.2014.2330702
https://doi.org/10.1109/ICSE43902.2021.00081
https://doi.org/10.1145/2728606.2728612
https://doi.org/10.1016/0167-6377(94)90084-1
https://doi.org/10.1016/0167-6377(94)90084-1
https://doi.org/10.1145/1967701.1967710
https://doi.org/10.1007/978-3-319-96145-3_27
https://doi.org/10.1007/978-3-319-96145-3_27

A
287

[FPE21] G. F. Franklin, J. D. Powell and A. Emami-Naeini. ‘Feedback control
of dynamic systems’. Volume 8. Pearson, 2021. url: https : / / www .
pearson.com/en-us/subject-catalog/p/feedback-control-

of-dynamic-systems/P200000003343/9780137516834.
[FPK14] N. Ferns, D. Precup and S. Knight. ‘Bisimulation for Markov Decision

Processes through Families of Functional Expressions’. Horizons of the
Mind. Volume 8464. Lecture Notes in Computer Science. Springer, 2014,
pages 319–342. doi: 10.1007/978-3-319-06880-0_17.

[FQMN+22] C. Fan, Z. Qin, U. Mathur, Q. Ning, S. Mitra and M. Viswanathan. ‘Con-
troller Synthesis for Linear System With Reach-Avoid Specifications’. IEEE
Trans. Autom. Control. 67.4 (2022), pages 1713–1727. doi: 10.1109/TAC.
2021.3069723.

[FT14] J. Fu and U. Topcu. ‘Probably Approximately Correct MDP Learning and
Control With Temporal Logic Constraints’. Robotics: Science and Systems.
2014. doi: 10.15607/RSS.2014.X.039.

[FTG16] A. Filieri, G. Tamburrelli and C. Ghezzi. ‘Supporting Self-Adaptation via
Quantitative Verification and Sensitivity Analysis at Run Time’. IEEE Trans.
Software Eng. 42.1 (2016), pages 75–99. doi: 10 . 1109 / TSE . 2015 .
2421318.

[FÜ11] C. R. Fox and G. Ülkümen. ‘Distinguishing two dimensions of uncertainty’.
Essays in Judgment and Decision Making (2011). doi: 10.2139/ssrn.
3695311.

[Fuk21] K. Fukuda. ‘Cddlib reference manual’. Report version 094m, McGill Uni-
versity, Montréal, Quebec, Canada (2021). url: https://people.inf.
ethz.ch/fukudak/cdd_home/cddlibman2021.pdf.

[GB20] M. Gaon and R. I. Brafman. ‘Reinforcement Learning with Non-Markovian
Rewards’. AAAI. AAAI Press, 2020, pages 3980–3987. doi: 10.1609/
AAAI.V34I04.5814.

[GBLL24] I. Gracia, D. Boskos, L. Laurenti and M. Lahijanian. ‘Data-driven strategy
synthesis for stochastic systems with unknown nonlinear disturbances’.
L4DC. Volume 242. Proceedings of Machine Learning Research. PMLR,
2024, pages 1633–1645. doi: 10.48550/arXiv.2406.09704.

[GC06] J. C. Geromel and P. Colaneri. ‘Robust stability of time varying polytopic
systems’. Syst. Control. Lett. 55.1 (2006), pages 81–85. doi: 10.1016/J.
SYSCONLE.2004.11.016.

[GC22] S. Garatti and M. C. Campi. ‘Risk and complexity in scenario optimization’.
Math. Program. 191.1 (2022), pages 243–279. doi: 10.1007/S10107-019-
01446-4.

[GDG03] R. Givan, T. L. Dean and M. Greig. ‘Equivalence notions and model minim-
ization in Markov decision processes’.Artif. Intell. 147.1-2 (2003), pages 163–
223. doi: 10.1016/S0004-3702(02)00376-4.

https://www.pearson.com/en-us/subject-catalog/p/feedback-control-of-dynamic-systems/P200000003343/9780137516834
https://www.pearson.com/en-us/subject-catalog/p/feedback-control-of-dynamic-systems/P200000003343/9780137516834
https://www.pearson.com/en-us/subject-catalog/p/feedback-control-of-dynamic-systems/P200000003343/9780137516834
https://doi.org/10.1007/978-3-319-06880-0_17
https://doi.org/10.1109/TAC.2021.3069723
https://doi.org/10.1109/TAC.2021.3069723
https://doi.org/10.15607/RSS.2014.X.039
https://doi.org/10.1109/TSE.2015.2421318
https://doi.org/10.1109/TSE.2015.2421318
https://doi.org/10.2139/ssrn.3695311
https://doi.org/10.2139/ssrn.3695311
https://people.inf.ethz.ch/fukudak/cdd_home/cddlibman2021.pdf
https://people.inf.ethz.ch/fukudak/cdd_home/cddlibman2021.pdf
https://doi.org/10.1609/AAAI.V34I04.5814
https://doi.org/10.1609/AAAI.V34I04.5814
https://doi.org/10.48550/arXiv.2406.09704
https://doi.org/10.1016/J.SYSCONLE.2004.11.016
https://doi.org/10.1016/J.SYSCONLE.2004.11.016
https://doi.org/10.1007/S10107-019-01446-4
https://doi.org/10.1007/S10107-019-01446-4
https://doi.org/10.1016/S0004-3702(02)00376-4

288 A Bibliography

[GF15] J. García and F. Fernández. ‘A comprehensive survey on safe reinforcement
learning’. J. Mach. Learn. Res. 16 (2015), pages 1437–1480. doi: 10.5555/
2789272.2886795.

[GG23] V. Goyal and J. Grand-Clément. ‘Robust Markov Decision Processes: Beyond
Rectangularity’. Math. Oper. Res. 48.1 (2023), pages 203–226. doi: 10.
1287/MOOR.2022.1259.

[GH09] X. Guo and O. Hernández-Lerma. ‘Continuous-Time Markov Decision
Processes’. Continuous-Time Markov Decision Processes: Theory and Applic-
ations. Springer Berlin Heidelberg, 2009, pages 9–18. doi: 10.1007/978-
3-642-02547-1_2.

[GHHK+20] T. P. Gros, H. Hermanns, J. Hoffmann, M. Klauck and M. Steinmetz.
‘Deep Statistical Model Checking’. FORTE. Volume 12136. Lecture Notes in
Computer Science. Springer, 2020, pages 96–114. doi: 10.1007/978-3-
030-50086-3_6.

[GHS18] P. Gainer, E. M. Hahn and S. Schewe. ‘Incremental Verification of Paramet-
ric and Reconfigurable Markov Chains’. Lecture Notes in Computer Science
11024 (2018), pages 140–156. doi: 10.1007/978-3-319-99154-2_9.

[GHZZ13] Y. Gao, E. M. Hahn, N. Zhan and L. Zhang. ‘CCMC: A Conditional CSL
Model Checker for Continuous-Time Markov Chains’. ATVA. Volume 8172.
Lecture Notes in Computer Science. Springer, 2013, pages 464–468. doi:
10.1007/978-3-319-02444-8_36.

[GKM10] C. Goerzen, Z. Kong and B. Mettler. ‘A Survey of Motion Planning Al-
gorithms from the Perspective of Autonomous UAV Guidance’. J. Intell.
Robotic Syst. 57.1-4 (2010), pages 65–100. doi: 10.1007/S10846-009-
9383-1.

[GKP01] C. Guestrin, D. Koller and R. Parr. ‘Multiagent Planning with Factored
MDPs’. NIPS. MIT Press, 2001, pages 1523–1530. url: https : / /

proceedings . neurips . cc / paper _ files / paper / 2001 / file /

7af6266cc52234b5aa339b16695f7fc4-Paper.pdf.
[GKPV03] C. Guestrin, D. Koller, R. Parr and S. Venkataraman. ‘Efficient Solution

Algorithms for Factored MDPs’. J. Artif. Intell. Res. 19 (2003), pages 399–468.
doi: 10.1613/JAIR.1000.

[GLD00] R. Givan, S. M. Leach and T. L. Dean. ‘Bounded-parameter Markov decision
processes’.Artif. Intell. 122.1-2 (2000), pages 71–109. doi: 10.1016/S0004-
3702(00)00047-3.

[GLMA+24] I. Gracia, L. Laurenti, M. Mazo Jr., A. Abate and M. Lahijanian. ‘Temporal
Logic Control for Nonlinear Stochastic Systems Under Unknown Disturb-
ances’. 2024. doi: 10.48550/arXiv.2412.11343.

[GM84] D. Gross and D. R. Miller. ‘The Randomization Technique as a Modeling
Tool and Solution Procedure for Transient Markov Processes’. Oper. Res. 32.2
(1984), pages 343–361. doi: 10.1287/OPRE.32.2.343.

https://doi.org/10.5555/2789272.2886795
https://doi.org/10.5555/2789272.2886795
https://doi.org/10.1287/MOOR.2022.1259
https://doi.org/10.1287/MOOR.2022.1259
https://doi.org/10.1007/978-3-642-02547-1_2
https://doi.org/10.1007/978-3-642-02547-1_2
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.1007/978-3-319-99154-2_9
https://doi.org/10.1007/978-3-319-02444-8_36
https://doi.org/10.1007/S10846-009-9383-1
https://doi.org/10.1007/S10846-009-9383-1
https://proceedings.neurips.cc/paper_files/paper/2001/file/7af6266cc52234b5aa339b16695f7fc4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/7af6266cc52234b5aa339b16695f7fc4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/7af6266cc52234b5aa339b16695f7fc4-Paper.pdf
https://doi.org/10.1613/JAIR.1000
https://doi.org/10.1016/S0004-3702(00)00047-3
https://doi.org/10.1016/S0004-3702(00)00047-3
https://doi.org/10.48550/arXiv.2412.11343
https://doi.org/10.1287/OPRE.32.2.343

A
289

[GMT14] V. Gabrel, C. Murat and A. Thiele. ‘Recent advances in robust optimization:
An overview’. Eur. J. Oper. Res. 235.3 (2014), pages 471–483. doi: 10.1016/
J.EJOR.2013.09.036.

[GP09] A. Girard and G. J. Pappas. ‘Hierarchical control system design using ap-
proximate simulation’. Autom. 45.2 (2009), pages 566–571. doi: 10.1016/
J.AUTOMATICA.2008.09.016.

[GS10] J. Goh and M. Sim. ‘Distributionally Robust Optimization and Its Tractable
Approximations’. Oper. Res. 58.4-Part-1 (2010), pages 902–917. doi: 10.
1287/OPRE.1090.0795.

[GSD12] A. Guez, D. Silver and P. Dayan. ‘Efficient Bayes-Adaptive Reinforcement
Learning using Sample-Based Search’. NIPS. 2012, pages 1034–1042. doi:
10.48550/arXiv.1205.3109.

[Gur23] Gurobi Optimization, LLC. ‘Gurobi Optimizer Reference Manual’. 2023.
url: https://www.gurobi.com.

[GXZZ13] Y. Gao, M. Xu, N. Zhan and L. Zhang. ‘Model checking conditional CSL for
continuous-time Markov chains’. Inf. Process. Lett. 113.1-2 (2013), pages 44–
50. doi: 10.1016/J.IPL.2012.09.009.

[GY07] M. J. F. Gales and S. J. Young. ‘The Application of Hidden Markov Models
in Speech Recognition’. Found. Trends Signal Process. 1.3 (2007), pages 195–
304. doi: 10.1561/2000000004.

[GY22] J. Guan and N. Yu. ‘A Probabilistic Logic for Verifying Continuous-time
Markov Chains’. TACAS (2). Volume 13244. Lecture Notes in Computer
Science. Springer, 2022, pages 3–21. doi: 10.1007/978-3-030-99527-
0_1.

[GZMG+16] S. Grammatico, X. Zhang, K. Margellos, P. J. Goulart and J. Lygeros. ‘A
Scenario Approach for Non-Convex Control Design’. IEEE Trans. Autom.
Control. 61.2 (2016), pages 334–345. doi: 10.1109/TAC.2015.2433591.

[HBK17] L. Hutschenreiter, C. Baier and J. Klein. ‘Parametric Markov Chains: PCTL
Complexity and Fraction-free Gaussian Elimination’.GandALF. Volume 256.
EPTCS. 2017, pages 16–30. doi: 10.4204/EPTCS.256.2.

[HCHB+17] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac and C. J. Tomlin.
‘FaSTrack: A modular framework for fast and guaranteed safe motion
planning’. CDC. IEEE, 2017, pages 1517–1522. doi: 10.1109/CDC.2017.
8263867.

[Her02] H. Hermanns. ‘Interactive Markov Chains: The Quest for Quantified Qual-
ity’. Volume 2428. Lecture Notes in Computer Science. Springer, 2002.
doi: 10.1007/3-540-45804-2.

[HH12] H. Hatefi and H. Hermanns. ‘Model Checking Algorithms for Markov
Automata’. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 53 (2012).
doi: 10.14279/TUJ.ECEASST.53.783.

[HHA17] S. Haesaert, P. M. J. V. den Hof and A. Abate. ‘Data-driven andmodel-based
verification via Bayesian identification and reachability analysis’. Autom.
79 (2017), pages 115–126. doi: 10.1016/J.AUTOMATICA.2017.01.037.

https://doi.org/10.1016/J.EJOR.2013.09.036
https://doi.org/10.1016/J.EJOR.2013.09.036
https://doi.org/10.1016/J.AUTOMATICA.2008.09.016
https://doi.org/10.1016/J.AUTOMATICA.2008.09.016
https://doi.org/10.1287/OPRE.1090.0795
https://doi.org/10.1287/OPRE.1090.0795
https://doi.org/10.48550/arXiv.1205.3109
https://www.gurobi.com
https://doi.org/10.1016/J.IPL.2012.09.009
https://doi.org/10.1561/2000000004
https://doi.org/10.1007/978-3-030-99527-0_1
https://doi.org/10.1007/978-3-030-99527-0_1
https://doi.org/10.1109/TAC.2015.2433591
https://doi.org/10.4204/EPTCS.256.2
https://doi.org/10.1109/CDC.2017.8263867
https://doi.org/10.1109/CDC.2017.8263867
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.14279/TUJ.ECEASST.53.783
https://doi.org/10.1016/J.AUTOMATICA.2017.01.037

290 A Bibliography

[HHHT16] E. M. Hahn, V. Hashemi, H. Hermanns and A. Turrini. ‘Exploiting Robust
Optimization for Interval Probabilistic Bisimulation’. QEST. Volume 9826.
Lecture Notes in Computer Science. Springer, 2016, pages 55–71. doi:
10.1007/978-3-319-43425-4_4.

[HHK00] B. R. Haverkort, H. Hermanns and J. Katoen. ‘On the Use of Model Checking
Techniques for Dependability Evaluation’. SRDS. IEEE Computer Society,
2000, pages 228–237. doi: 10.1109/RELDI.2000.885410.

[HHSS+16] V. Hashemi, H. Hermanns, L. Song, K. Subramani, A. Turrini and P. Woj-
ciechowski. ‘Compositional Bisimulation Minimization for Interval Markov
Decision Processes’. LATA. Volume 9618. Lecture Notes in Computer Sci-
ence. Springer, 2016, pages 114–126. doi: 10.1007/978-3-319-30000-
9_9.

[HHWZ10] E. M. Hahn, H. Hermanns, B. Wachter and L. Zhang. ‘PASS: Abstraction
Refinement for Infinite Probabilistic Models’. TACAS. Volume 6015. Lecture
Notes in Computer Science. Springer, 2010, pages 353–357. doi: 10.1007/
978-3-642-12002-2_30.

[HHZ11a] E. M. Hahn, T. Han and L. Zhang. ‘Synthesis for PCTL in Parametric Markov
Decision Processes’. NASA Formal Methods. Volume 6617. Lecture Notes
in Computer Science. Springer, 2011, pages 146–161. doi: 10.1007/978-
3-642-20398-5_12.

[HHZ11b] E. M. Hahn, H. Hermanns and L. Zhang. ‘Probabilistic reachability for
parametric Markov models’. Int. J. Softw. Tools Technol. Transf. 13.1 (2011),
pages 3–19. doi: 10.1007/S10009-010-0146-X.

[HJ02] J. Han and P. Jonker. ‘A System Architecture Solution for Unreliable
Nanoelectronic Devices’. IEEE Transactions on Nanotechnology 1 (2002),
pages 201–208. doi: 10.1109/TNANO.2002.807393.

[HJ94] H. Hansson and B. Jonsson. ‘A Logic for Reasoning about Time and Reliab-
ility’. Formal Aspects Comput. 6.5 (1994), pages 512–535. doi: 10.1007/
BF01211866.

[HJKQ+22] C. Hensel, S. Junges, J. Katoen, T. Quatmann and M. Volk. ‘The probabil-
istic model checker Storm’. Int. J. Softw. Tools Technol. Transf. 24.4 (2022),
pages 589–610. doi: 10.1007/S10009-021-00633-Z.

[HJQW23] A. Hartmanns, S. Junges, T.Quatmann and M.Weininger. ‘A Practitioner’s
Guide to MDP Model Checking Algorithms’. TACAS (1). Volume 13993.
Lecture Notes in Computer Science. Springer, 2023, pages 469–488. doi:
10.1007/978-3-031-30823-9_24.

[HK10] A. J. Hoffman and J. B. Kruskal. ‘Integral Boundary Points of Convex
Polyhedra’. 50 Years of Integer Programming. Springer, 2010, pages 49–76.
doi: 10.1007/978-3-540-68279-0_3.

[HKK14] H. Hermanns, J. Krcál and J. Kretínský. ‘Probabilistic Bisimulation: Natur-
ally on Distributions’. CONCUR. Volume 8704. Lecture Notes in Computer
Science. Springer, 2014, pages 249–265. doi: 10.1007/978-3-662-
44584-6_18.

https://doi.org/10.1007/978-3-319-43425-4_4
https://doi.org/10.1109/RELDI.2000.885410
https://doi.org/10.1007/978-3-319-30000-9_9
https://doi.org/10.1007/978-3-319-30000-9_9
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/S10009-010-0146-X
https://doi.org/10.1109/TNANO.2002.807393
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/S10009-021-00633-Z
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-540-68279-0_3
https://doi.org/10.1007/978-3-662-44584-6_18
https://doi.org/10.1007/978-3-662-44584-6_18

A
291

[HKM08] T. Han, J. Katoen and A. Mereacre. ‘Approximate Parameter Synthesis for
Probabilistic Time-Bounded Reachability’. RTSS. IEEE Computer Society,
2008, pages 173–182. doi: 10.1109/RTSS.2008.19.

[HKPQ+19] A. Hartmanns, M. Klauck, D. Parker, T. Quatmann and E. Ruijters. ‘The
Quantitative Verification Benchmark Set’. TACAS (1). Volume 11427. Lec-
ture Notes in Computer Science. Springer, 2019, pages 344–350. doi:
10.1007/978-3-030-17462-0_20.

[HMS99] H. Hermanns, J. Meyer-Kayser and M. Siegle. ‘Multi terminal binary
decision diagrams to represent and analyse continuous time Markov
chains’. 3rd Int. Workshop on the Numerical Solution of Markov Chains.
Citeseer. 1999, pages 188–207. url: https : / / www . unibw . de /

technische-informatik/mitarbeiter/professoren/siegle/

publikationen/nsmc99.pdf.
[HNPW+11] E. M. Hahn, G. Norman, D. Parker, B. Wachter and L. Zhang. ‘Game-based

Abstraction and Controller Synthesis for Probabilistic Hybrid Systems’.QEST.
IEEE Computer Society, 2011, pages 69–78. doi: 10.1109/QEST.2011.
17.

[HNVT+18] S. Haesaert, P. Nilsson, C. I. Vasile, R. Thakker, A. Agha-mohammadi,
A. D. Ames and R. M. Murray. ‘Temporal Logic Control of POMDPs via
Label-based Stochastic Simulation Relations’. ADHS. Volume 51. IFAC-
PapersOnLine 16. Elsevier, 2018, pages 271–276. doi: 10 . 1016 / J .
IFACOL.2018.08.046.

[HPSW+11] H. Hermanns, A. Parma, R. Segala, B. Wachter and L. Zhang. ‘Probabilistic
Logical Characterization’. Inf. Comput. 209.2 (2011), pages 154–172. doi:
10.1016/J.IC.2010.11.024.

[HPW18] C. P. Ho, M. Petrik and W. Wiesemann. ‘Fast Bellman Updates for Ro-
bust MDPs’. ICML. Volume 80. Proceedings of Machine Learning Re-
search. PMLR, 2018, pages 1984–1993. url: https://proceedings.
mlr.press/v80/ho18a.html.

[HRW12] J. Humpherys, P. Redd and J. M. West. ‘A Fresh Look at the Kalman Filter’.
SIAM Rev. 54.4 (2012), pages 801–823. doi: 10.1137/100799666.

[HS09] A. Hobolth and E. A. Stone. ‘Simulation from endpoint-conditioned,
continuous-time Markov chains on a finite state space, with applications to
molecular evolution’. The annals of applied statistics 3.3 (2009), page 1204.
doi: 10.1214/09-AOAS247.

[HSA17] S. Haesaert, S. E. Z. Soudjani and A. Abate. ‘Verification of General Markov
Decision Processes by Approximate Similarity Relations and Policy Re-
finement’. SIAM J. Control. Optim. 55.4 (2017), pages 2333–2367. doi:
10.1137/16M1079397.

[HSJM+22] L. Heck, J. Spel, S. Junges, J. Moerman and J. Katoen. ‘Gradient-Descent for
Randomized Controllers Under Partial Observability’.VMCAI. Volume 13182.
Lecture Notes in Computer Science. Springer, 2022, pages 127–150. doi:
10.1007/978-3-030-94583-1_7.

https://doi.org/10.1109/RTSS.2008.19
https://doi.org/10.1007/978-3-030-17462-0_20
https://www.unibw.de/technische-informatik/mitarbeiter/professoren/siegle/publikationen/nsmc99.pdf
https://www.unibw.de/technische-informatik/mitarbeiter/professoren/siegle/publikationen/nsmc99.pdf
https://www.unibw.de/technische-informatik/mitarbeiter/professoren/siegle/publikationen/nsmc99.pdf
https://doi.org/10.1109/QEST.2011.17
https://doi.org/10.1109/QEST.2011.17
https://doi.org/10.1016/J.IFACOL.2018.08.046
https://doi.org/10.1016/J.IFACOL.2018.08.046
https://doi.org/10.1016/J.IC.2010.11.024
https://proceedings.mlr.press/v80/ho18a.html
https://proceedings.mlr.press/v80/ho18a.html
https://doi.org/10.1137/100799666
https://doi.org/10.1214/09-AOAS247
https://doi.org/10.1137/16M1079397
https://doi.org/10.1007/978-3-030-94583-1_7

292 A Bibliography

[HSV93] L. Helmink, M. P. A. Sellink and F. W. Vaandrager. ‘Proof-Checking a Data
Link Protocol’. TYPES. Volume 806. Lecture Notes in Computer Science.
Springer, 1993, pages 127–165. doi: 10.1007/3-540-58085-9_75.

[HW21] E. Hüllermeier and W. Waegeman. ‘Aleatoric and epistemic uncertainty in
machine learning: an introduction to concepts and methods’. Mach. Learn.
110.3 (2021), pages 457–506. doi: 10.1007/S10994-021-05946-3.

[HW93] D. Haussler and M. Warmuth. ‘The Probably Approximately Correct (PAC)
and Other Learning Models’. Foundations of Knowledge Acquisition: Ma-
chine Learning. Edited by A. L. Meyrowitz and S. Chipman. Springer US,
1993, pages 291–312. doi: 10.1007/978-0-585-27366-2_9.

[IKVM18] R. T. Icarte, T. Q. Klassen, R. A. Valenzano and S. A. McIlraith. ‘Using
Reward Machines for High-Level Task Specification and Decomposition in
Reinforcement Learning’. ICML. Volume 80. Proceedings of Machine Learn-
ing Research. PMLR, 2018, pages 2112–2121. url: http://proceedings.
mlr.press/v80/icarte18a.html.

[IKVM22] R. T. Icarte, T. Q. Klassen, R. A. Valenzano and S. A. McIlraith. ‘Reward
Machines: Exploiting Reward Function Structure in Reinforcement Learning’.
J. Artif. Intell. Res. 73 (2022), pages 173–208. doi: 10.1613/JAIR.1.
12440.

[Iye05] G. N. Iyengar. ‘Robust Dynamic Programming’.Math. Oper. Res. 30.2 (2005),
pages 257–280. doi: 10.1287/MOOR.1040.0129.

[JÁHJ+24] S. Junges, E. Ábrahám, C. Hensel, N. Jansen, J. Katoen, T. Quatmann and
M. Volk. ‘Parameter synthesis for Markov models: covering the parameter
space’. Formal Methods Syst. Des. 62.1 (2024), pages 181–259. doi: 10.
1007/S10703-023-00442-X.

[JBBA21] K. Jothimurugan, S. Bansal, O. Bastani and R. Alur. ‘Compositional
Reinforcement Learning from Logical Specifications’. NeurIPS. 2021,
pages 10026–10039. doi: 10.48550/arXiv.2106.13906.

[Jen53] A. Jensen. ‘Markoff chains as an aid in the study of Markoff processes’.
Scandinavian Actuarial Journal 3 (1953), pages 87–91. doi: 10.1080/
03461238.1953.10419459.

[JJK22] N. Jansen, S. Junges and J. Katoen. ‘Parameter Synthesis in Markov Models:
A Gentle Survey’. Principles of Systems Design. Volume 13660. Lecture
Notes in Computer Science. Springer, 2022, pages 407–437. doi: 10.1007/
978-3-031-22337-2_20.

[JKPW21] S. Junges, J. Katoen, G. A. Pérez and T. Winkler. ‘The complexity of reach-
ability in parametric Markov decision processes’. J. Comput. Syst. Sci. 119
(2021), pages 183–210. doi: 10.1016/J.JCSS.2021.02.006.

[JL91] B. Jonsson and K. G. Larsen. ‘Specification and Refinement of Probabilistic
Processes’. LICS. IEEE Computer Society, 1991, pages 266–277. doi: 10.
1109/LICS.1991.151651.

https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/S10994-021-05946-3
https://doi.org/10.1007/978-0-585-27366-2_9
http://proceedings.mlr.press/v80/icarte18a.html
http://proceedings.mlr.press/v80/icarte18a.html
https://doi.org/10.1613/JAIR.1.12440
https://doi.org/10.1613/JAIR.1.12440
https://doi.org/10.1287/MOOR.1040.0129
https://doi.org/10.1007/S10703-023-00442-X
https://doi.org/10.1007/S10703-023-00442-X
https://doi.org/10.48550/arXiv.2106.13906
https://doi.org/10.1080/03461238.1953.10419459
https://doi.org/10.1080/03461238.1953.10419459
https://doi.org/10.1007/978-3-031-22337-2_20
https://doi.org/10.1007/978-3-031-22337-2_20
https://doi.org/10.1016/J.JCSS.2021.02.006
https://doi.org/10.1109/LICS.1991.151651
https://doi.org/10.1109/LICS.1991.151651

A
293

[JLFL20] J. Jackson, L. Laurenti, E. W. Frew and M. Lahijanian. ‘Safety Verification
of Unknown Dynamical Systems via Gaussian Process Regression’. CDC.
IEEE, 2020, pages 860–866. doi: 10.1109/CDC42340.2020.9303814.

[JTS21] S. Junges, H. Torfah and S. A. Seshia. ‘Runtime Monitors for Markov
Decision Processes’. CAV (2). Volume 12760. Lecture Notes in Computer
Science. Springer, 2021, pages 553–576. doi: 10.1007/978-3-030-
81688-9_26.

[Jun20] S. Junges. ‘Parameter synthesis in Markov models’. PhD thesis. RWTH
Aachen University, Germany, 2020. doi: 10.18154/RWTH-2020-02348.

[Kak03] S. M. Kakade. ‘On the sample complexity of reinforcement learning’. PhD
thesis. University of London, University College London (United King-
dom), 2003. url: https://homes.cs.washington.edu/~sham/
papers/thesis/sham_thesis.pdf.

[Kal02] O. Kallenberg. ‘Foundations of modern probability’. Probability and its
applications. Springer, 2002. doi: 10.1007/978-3-030-61871-1.

[Kal60] R. E. Kalman. ‘A new approach to linear filtering and prediction prob-
lems’. Journal of Fluids Engineering, Transactions of the ASME 82.1 (1960),
pages 35–45. doi: 10.1115/1.3662552.

[Kat16] J. Katoen. ‘The Probabilistic Model Checking Landscape’. LICS. ACM, 2016,
pages 31–45. doi: 10.1145/2933575.2934574.

[KBJT19] J. Kenanian, A. Balkan, R. M. Jungers and P. Tabuada. ‘Data driven stability
analysis of black-box switched linear systems’. Autom. 109 (2019). doi:
10.1016/J.AUTOMATICA.2019.108533.

[KCOB21] C. Knuth, G. Chou, N. Ozay and D. Berenson. ‘Planning With Learned
Dynamics: Probabilistic Guarantees on Safety and Reachability via Lipschitz
Constants’. IEEE Robotics Autom. Lett. 6.3 (2021), pages 5129–5136. doi:
10.1109/LRA.2021.3068889.

[KFM04] C. C. T. Kwok, D. Fox and M. Meila. ‘Real-time particle filters’. Proc. IEEE
92.3 (2004), pages 469–484. doi: 10.1109/JPROC.2003.823144.

[KG02] H. K. Khalil and J. W. Grizzle. ‘Nonlinear systems’. Volume 3. Prentice hall
Upper Saddle River, NJ, 2002.

[KGS07] B. T. Kulakowski, J. F. Gardner and J. L. Shearer. ‘Dynamic modeling and
control of engineering systems’. Cambridge University Press, 2007. doi:
10.1017/CBO9780511805417.

[KIKF22] M. Koegel, M. Ibrahim, C. Kallies and R. Findeisen. ‘Safe Hierarchical
Model Predictive Control and Planning for Autonomous Systems’. CoRR
abs/2203.14269 (2022). doi: 10.48550/arXiv.2203.14269.

[KKNP01] J. Katoen, M. Z. Kwiatkowska, G. Norman and D. Parker. ‘Faster and
Symbolic CTMC Model Checking’. PAPM-PROBMIV. Volume 2165. Lecture
Notes in Computer Science. Springer, 2001, pages 23–38. doi: 10.1007/3-
540-44804-7_2.

https://doi.org/10.1109/CDC42340.2020.9303814
https://doi.org/10.1007/978-3-030-81688-9_26
https://doi.org/10.1007/978-3-030-81688-9_26
https://doi.org/10.18154/RWTH-2020-02348
https://homes.cs.washington.edu/~sham/papers/thesis/sham_thesis.pdf
https://homes.cs.washington.edu/~sham/papers/thesis/sham_thesis.pdf
https://doi.org/10.1007/978-3-030-61871-1
https://doi.org/10.1115/1.3662552
https://doi.org/10.1145/2933575.2934574
https://doi.org/10.1016/J.AUTOMATICA.2019.108533
https://doi.org/10.1109/LRA.2021.3068889
https://doi.org/10.1109/JPROC.2003.823144
https://doi.org/10.1017/CBO9780511805417
https://doi.org/10.48550/arXiv.2203.14269
https://doi.org/10.1007/3-540-44804-7_2
https://doi.org/10.1007/3-540-44804-7_2

294 A Bibliography

[KKNP10] M. Kattenbelt, M. Z. Kwiatkowska, G. Norman and D. Parker. ‘A game-
based abstraction-refinement framework for Markov decision processes’.
Formal Methods Syst. Des. 36.3 (2010), pages 246–280. doi: 10.1007/
S10703-010-0097-6.

[KKR16] L. Korenciak, A. Kucera and V. Rehák. ‘Efficient Timeout Synthesis in
Fixed-Delay CTMC Using Policy Iteration’. MASCOTS. IEEE Computer
Society, 2016, pages 367–372. doi: 10.1109/MASCOTS.2016.34.

[KLC98] L. P. Kaelbling, M. L. Littman and A. R. Cassandra. ‘Planning and Acting
in Partially Observable Stochastic Domains’. Artif. Intell. 101.1-2 (1998),
pages 99–134. doi: 10.1016/S0004-3702(98)00023-X.

[KLM96] L. P. Kaelbling, M. L. Littman and A. W. Moore. ‘Reinforcement Learning:
A Survey’. J. Artif. Intell. Res. 4 (1996), pages 237–285. doi: 10.1613/
JAIR.301.

[KNP02] M. Z. Kwiatkowska, G. Norman and D. Parker. ‘PRISM: Probabilistic
Symbolic Model Checker’. Computer Performance Evaluation / TOOLS.
Volume 2324. Lecture Notes in Computer Science. Springer, 2002,
pages 200–204. doi: 10.1007/3-540-46029-2_13.

[KNP06] M. Z. Kwiatkowska, G. Norman and A. Pacheco. ‘Model checking expected
time and expected reward formulae with random time bounds’. Comput.
Math. Appl. 51.2 (2006), pages 305–316. doi: 10.1016/J.CAMWA.2005.
11.016.

[KNP11] M. Z. Kwiatkowska, G. Norman and D. Parker. ‘PRISM 4.0: Verification
of Probabilistic Real-Time Systems’. CAV. Volume 6806. Lecture Notes in
Computer Science. Springer, 2011, pages 585–591. doi: 10.1007/978-3-
642-22110-1_47.

[KNP12] M. Z. Kwiatkowska, G. Norman and D. Parker. ‘The PRISM Benchmark
Suite’. QEST. IEEE Computer Society, 2012, pages 203–204. doi: 10.1109/
QEST.2012.14.

[KOA17] S. Katt, F. A. Oliehoek and C. Amato. ‘Learning in POMDPs with Monte
Carlo Tree Search’. ICML. Volume 70. Proceedings of Machine Learning
Research. PMLR, 2017, pages 1819–1827. url: http://proceedings.
mlr.press/v70/katt17a.html.

[Kra07] J. Kramer. ‘Is abstraction the key to computing?’ Commun. ACM 50.4 (2007),
pages 36–42. doi: 10.1145/1232743.1232745.

[KS02] M. J. Kearns and S. Singh. ‘Near-Optimal Reinforcement Learning in Poly-
nomial Time’.Mach. Learn. 49.2-3 (2002), pages 209–232. doi: 10.1023/A:
1017984413808.

[LAB15] M. Lahijanian, S. B. Andersson and C. Belta. ‘Formal Verification and
Synthesis for Discrete-Time Stochastic Systems’. IEEE Trans. Autom. Control.
60.8 (2015), pages 2031–2045. doi: 10.1109/TAC.2015.2398883.

[LaV06] S. M. LaValle. ‘Planning Algorithms’. Cambridge University Press, 2006.
doi: 10.1017/CBO9780511546877.

https://doi.org/10.1007/S10703-010-0097-6
https://doi.org/10.1007/S10703-010-0097-6
https://doi.org/10.1109/MASCOTS.2016.34
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1613/JAIR.301
https://doi.org/10.1613/JAIR.301
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1016/J.CAMWA.2005.11.016
https://doi.org/10.1016/J.CAMWA.2005.11.016
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1109/QEST.2012.14
http://proceedings.mlr.press/v70/katt17a.html
http://proceedings.mlr.press/v70/katt17a.html
https://doi.org/10.1145/1232743.1232745
https://doi.org/10.1023/A:1017984413808
https://doi.org/10.1023/A:1017984413808
https://doi.org/10.1109/TAC.2015.2398883
https://doi.org/10.1017/CBO9780511546877

A
295

[LB02] C. M. Lagoa and B. R. Barmish. ‘Distributionally robust Monte Carlo simu-
lation: A tutorial survey’. IFAC Proceedings Volumes 35.1 (2002), pages 151–
162. doi: 10.3182/20020721-6-ES-1901.00360.

[LB16] T. Lipp and S. Boyd. ‘Variations and extension of the convex–concave
procedure’. Optimization and Engineering 17 (2016), pages 263–287. doi:
10.1007/s11081-015-9294-x.

[LBBS+18] Y. R. S. Llerena, M. Böhme, M. Brünink, G. Su and D. S. Rosenblum.
‘Verifying the long-run behavior of probabilistic system models in the pres-
ence of uncertainty’. ESEC/SIGSOFT FSE. ACM, 2018, pages 587–597. doi:
10.1145/3236024.3236078.

[LDB10] A. Legay, B. Delahaye and S. Bensalem. ‘Statistical Model Checking: An
Overview’. RV. Volume 6418. Lecture Notes in Computer Science. Springer,
2010, pages 122–135. doi: 10.1007/978-3-642-16612-9_11.

[LKSZ20] A. Lavaei, M. Khaled, S. Soudjani and M. Zamani. ‘AMYTISS: Parallelized
Automated Controller Synthesis for Large-Scale Stochastic Systems’. CAV
(2). Volume 12225. Lecture Notes in Computer Science. Springer, 2020,
pages 461–474. doi: 10.1007/978-3-030-53291-8_24.

[LLTY+19] A. Legay, A. Lukina, L. Traonouez, J. Yang, S. A. Smolka and R. Grosu. ‘Stat-
istical Model Checking’. Computing and Software Science. Volume 10000.
Lecture Notes in Computer Science. Springer, 2019, pages 478–504. doi:
10.1007/978-3-319-91908-9_23.

[LMT07] R. Lanotte, A. Maggiolo-Schettini and A. Troina. ‘Parametric probabilistic
transition systems for system design and analysis’. Formal Aspects Comput.
19.1 (2007), pages 93–109. doi: 10.1007/S00165-006-0015-2.

[LOE13] K. Lesser, M. M. K. Oishi and R. S. Erwin. ‘Stochastic reachability for
control of spacecraft relative motion’. CDC. IEEE, 2013, pages 4705–4712.
doi: 10.1109/CDC.2013.6760626.

[Lov91] W. S. Lovejoy. ‘Computationally Feasible Bounds for Partially Observed
Markov Decision Processes’. Oper. Res. 39.1 (1991), pages 162–175. doi:
10.1287/OPRE.39.1.162.

[LS91] K. G. Larsen and A. Skou. ‘Bisimulation through Probabilistic Testing’. Inf.
Comput. 94.1 (1991), pages 1–28. doi: 10.1016/0890-5401(91)90030-
6.

[LSAZ22] A. Lavaei, S. Soudjani, A. Abate and M. Zamani. ‘Automated verification
and synthesis of stochastic hybrid systems: A survey’. Autom. 146 (2022),
page 110617. doi: 10.1016/J.AUTOMATICA.2022.110617.

[LSFZ23] A. Lavaei, S. Soudjani, E. Frazzoli and M. Zamani. ‘Constructing MDP
Abstractions Using Data With Formal Guarantees’. IEEE Control. Syst. Lett.
7 (2023), pages 460–465. doi: 10.1109/LCSYS.2022.3188535.

[LSS20] A. Loquercio, M. Segù and D. Scaramuzza. ‘A General Framework for
Uncertainty Estimation in Deep Learning’. IEEE Robotics Autom. Lett. 5.2
(2020), pages 3153–3160. doi: 10.1109/LRA.2020.2974682.

https://doi.org/10.3182/20020721-6-ES-1901.00360
https://doi.org/10.1007/s11081-015-9294-x
https://doi.org/10.1145/3236024.3236078
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-030-53291-8_24
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/S00165-006-0015-2
https://doi.org/10.1109/CDC.2013.6760626
https://doi.org/10.1287/OPRE.39.1.162
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/J.AUTOMATICA.2022.110617
https://doi.org/10.1109/LCSYS.2022.3188535
https://doi.org/10.1109/LRA.2020.2974682

296 A Bibliography

[LV95] N. A. Lynch and F. W. Vaandrager. ‘Forward and Backward Simulations:
I. Untimed Systems’. Inf. Comput. 121.2 (1995), pages 214–233. doi: 10.
1006/INCO.1995.1134.

[LWL06] L. Li, T. J. Walsh and M. L. Littman. ‘Towards a Unified Theory of State
Abstraction for MDPs’. AI&M. 2006. url: http://anytime.cs.umass.
edu/aimath06/proceedings/P21.pdf.

[LZCH22] M. Lechner, D. Zikelic, K. Chatterjee and T. A. Henzinger. ‘Stability Verific-
ation in Stochastic Control Systems via Neural Network Supermartingales’.
AAAI. AAAI Press, 2022, pages 7326–7336. doi: 10.1609/AAAI.V36I7.
20695.

[Mar20] G. Marcus. ‘The Next Decade in AI: Four Steps Towards Robust Artificial
Intelligence’. CoRR abs/2002.06177 (2020). doi: 10.48550/arXiv.2002.
06177.

[MBPJ23] T. M. Moerland, J. Broekens, A. Plaat and C. M. Jonker. ‘Model-based
Reinforcement Learning: A Survey’. Found. Trends Mach. Learn. 16.1 (2023),
pages 1–118. doi: 10.1561/2200000086.

[MCL23] F. B. Mathiesen, S. C. Calvert and L. Laurenti. ‘Safety Certification for
Stochastic Systems via Neural Barrier Functions’. IEEE Control. Syst. Lett. 7
(2023), pages 973–978. doi: 10.1109/LCSYS.2022.3229865.

[MG07] J. Matousek and B. Gärtner. ‘Integer Programming and LP Relaxation’.
Understanding and Using Linear Programming. Springer Berlin Heidelberg,
2007, pages 29–40. doi: 10.1007/978-3-540-30717-4_3.

[MGF21] A. Makdesi, A. Girard and L. Fribourg. ‘Efficient Data-Driven Abstrac-
tion of Monotone Systems with Disturbances’. ADHS. Volume 54. IFAC-
PapersOnLine 5. Elsevier, 2021, pages 49–54. doi: 10.1016/J.IFACOL.
2021.08.473.

[MGL14] K. Margellos, P. Goulart and J. Lygeros. ‘On the Road Between Robust Op-
timization and the Scenario Approach for Chance Constrained Optimization
Problems’. IEEE Trans. Autom. Control. 59.8 (2014), pages 2258–2263. doi:
10.1109/TAC.2014.2303232.

[MHC99] O. Madani, S. Hanks and A. Condon. ‘On the Undecidability of Probabil-
istic Planning and Infinite-Horizon Partially Observable Markov Decision
Problems’. AAAI/IAAI. AAAI Press / The MIT Press, 1999, pages 541–548.
doi: 10.1016/S0004-3702(02)00378-8.

[Mil68] B. L. Miller. ‘Finite state continuous time Markov decision processes with a
finite planning horizon’. SIAM Journal on Control 6.2 (1968), pages 266–
280. doi: 10.1016/0022-247X(68)90194-7.

[Mil71] R. Milner. ‘An Algebraic Definition of Simulation Between Programs’. IJCAI.
William Kaufmann, 1971, pages 481–489. url: https://dl.acm.org/
doi/abs/10.5555/1622876.1622926.

[Mil89] R. Milner. ‘Communication and concurrency’. PHI Series in computer
science. Prentice Hall, 1989. url: https://dl.acm.org/doi/book/10.
5555/534666.

https://doi.org/10.1006/INCO.1995.1134
https://doi.org/10.1006/INCO.1995.1134
http://anytime.cs.umass.edu/aimath06/proceedings/P21.pdf
http://anytime.cs.umass.edu/aimath06/proceedings/P21.pdf
https://doi.org/10.1609/AAAI.V36I7.20695
https://doi.org/10.1609/AAAI.V36I7.20695
https://doi.org/10.48550/arXiv.2002.06177
https://doi.org/10.48550/arXiv.2002.06177
https://doi.org/10.1561/2200000086
https://doi.org/10.1109/LCSYS.2022.3229865
https://doi.org/10.1007/978-3-540-30717-4_3
https://doi.org/10.1016/J.IFACOL.2021.08.473
https://doi.org/10.1016/J.IFACOL.2021.08.473
https://doi.org/10.1109/TAC.2014.2303232
https://doi.org/10.1016/S0004-3702(02)00378-8
https://doi.org/10.1016/0022-247X(68)90194-7
https://dl.acm.org/doi/abs/10.5555/1622876.1622926
https://dl.acm.org/doi/abs/10.5555/1622876.1622926
https://dl.acm.org/doi/book/10.5555/534666
https://dl.acm.org/doi/book/10.5555/534666

A
297

[ML03] C. B. Moler and C. V. Loan. ‘Nineteen Dubious Ways to Compute the
Exponential of a Matrix, Twenty-Five Years Later’. SIAM Rev. 45.1 (2003),
pages 3–49. doi: 10.1137/S00361445024180.

[MMAG14] I. Meedeniya, I. Moser, A. Aleti and L. Grunske. ‘Evaluating probabilistic
models with uncertain model parameters’. Softw. Syst. Model. 13.4 (2014),
pages 1395–1415. doi: 10.1007/S10270-012-0277-5.

[Mob02] R. K. Mobley. ‘An introduction to predictive maintenance’. Elsevier, 2002.
doi: 10.1016/B978-0-7506-7531-4.X5000-3.

[Mod22] H. Modares. ‘Data-driven Safe Control of Linear Systems Under Epistemic
and Aleatory Uncertainties’. CoRR abs/2202.04495 (2022). doi: 10.48550/
arXiv.2202.04495.

[MRTT53] T. S. Motzkin, H. Raiffa, G. L. Thompson and R. M. Thrall. ‘The double
description method’. Contributions to the Theory of Games 2.28 (1953),
pages 51–73. doi: 10.1515/9781400881970-004.

[MSXA18] Y. Mao, M. Szmuk, X. Xu and B. Açikmese. ‘Successive convexification: A su-
perlinearly convergent algorithm for non-convex optimal control problems’.
arXiv preprint (2018). doi: 10.48550/arXiv.1804.06539.

[MT17] A. Majumdar and R. Tedrake. ‘Funnel libraries for real-time robust feedback
motion planning’. Int. J. Robotics Res. 36.8 (2017), pages 947–982. doi:
10.1177/0278364917712421.

[Mun14] R. Munos. ‘From Bandits to Monte-Carlo Tree Search: The Optimistic Prin-
ciple Applied to Optimization and Planning’. Found. Trends Mach. Learn.
7.1 (2014), pages 1–129. doi: 10.1561/2200000038.

[MWW24] T. Meggendorfer, M. Weininger and P. Wienhöft. ‘What Are the Odds? Im-
proving the foundations of StatisticalModel Checking’.CoRR abs/2404.05424
(2024). doi: 10.48550/arXiv.2404.05424.

[New98] R. G. Newcombe. ‘Two-sided confidence intervals for the single proportion:
comparison of seven methods’. Statistics in medicine 17.8 (1998), pages 857–
872. doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-
SIM777>3.0.CO;2-E.

[NG05] A. Nilim and L. E. Ghaoui. ‘Robust Control of Markov Decision Processes
with Uncertain Transition Matrices’. Oper. Res. 53.5 (2005), pages 780–798.
doi: 10.1287/OPRE.1050.0216.

[NPCN+21] T. Nyberg, C. Pek, L. D. Col, C. Norén and J. Tumova. ‘Risk-aware Motion
Planning for Autonomous Vehicles with Safety Specifications’. IV. IEEE,
2021, pages 1016–1023. doi: 10.1109/IV48863.2021.9575928.

[NSK09] M. R. Neuhäußer, M. Stoelinga and J. Katoen. ‘Delayed Nondeterminism
in Continuous-Time Markov Decision Processes’. FoSSaCS. Volume 5504.
Lecture Notes in Computer Science. Springer, 2009, pages 364–379. doi:
10.1007/978-3-642-00596-1_26.

[OA16] F. A. Oliehoek and C. Amato. ‘A Concise Introduction to Decentralized
POMDPs’. Springer Briefs in Intelligent Systems. Springer, 2016. doi:
10.1007/978-3-319-28929-8.

https://doi.org/10.1137/S00361445024180
https://doi.org/10.1007/S10270-012-0277-5
https://doi.org/10.1016/B978-0-7506-7531-4.X5000-3
https://doi.org/10.48550/arXiv.2202.04495
https://doi.org/10.48550/arXiv.2202.04495
https://doi.org/10.1515/9781400881970-004
https://doi.org/10.48550/arXiv.1804.06539
https://doi.org/10.1177/0278364917712421
https://doi.org/10.1561/2200000038
https://doi.org/10.48550/arXiv.2404.05424
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
https://doi.org/10.1287/OPRE.1050.0216
https://doi.org/10.1109/IV48863.2021.9575928
https://doi.org/10.1007/978-3-642-00596-1_26
https://doi.org/10.1007/978-3-319-28929-8

298 A Bibliography

[OSV08] F. A. Oliehoek, M. T. J. Spaan and N. Vlassis. ‘Optimal and Approximate
Q-value Functions for Decentralized POMDPs’. J. Artif. Intell. Res. 32 (2008),
pages 289–353. doi: 10.1613/JAIR.2447.

[PAQM18] Y. V. Pant, H. Abbas, R. A.Quaye and R. Mangharam. ‘Fly-by-logic: control
of multi-drone fleets with temporal logic objectives’. ICCPS. IEEE Computer
Society / ACM, 2018, pages 186–197. doi: 10.1109/ICCPS.2018.00026.

[Per09] T. J. Perkins. ‘Maximum likelihood trajectories for continuous-time Markov
chains’. NIPS. Curran Associates, Inc., 2009, pages 1437–1445. url: https:
//proceedings.neurips.cc/paper_files/paper/2009/file/

afda332245e2af431fb7b672a68b659d-Paper.pdf.
[PGT03] J. Pineau, G. J. Gordon and S. Thrun. ‘Point-based value iteration: An any-

time algorithm for POMDPs’. IJCAI. Morgan Kaufmann, 2003, pages 1025–
1032. url: https://dl.acm.org/doi/10.5555/1630659.1630806.

[PK08] G. Papaefthymiou and B. Klöckl. ‘MCMC for wind power simulation’.
IEEE Transactions on Energy Conversion 23.1 (2008), pages 234–240. doi:
10.1109/TEC.2007.914174.

[PKOW20] E. van der Pol, T. Kipf, F. A. Oliehoek and M. Welling. ‘Plannable Approx-
imations to MDP Homomorphisms: Equivariance under Actions’. AAMAS.
International Foundation for Autonomous Agents and Multiagent Sys-
tems, 2020, pages 1431–1439. doi: 10.5555/3398761.3398926.

[PLSS13] A. Puggelli, W. Li, A. L. Sangiovanni-Vincentelli and S. A. Seshia.
‘Polynomial-Time Verification of PCTL Properties of MDPs with Con-
vex Uncertainties’. CAV. Volume 8044. Lecture Notes in Computer Science.
Springer, 2013, pages 527–542. doi: 10.1007/978-3-642-39799-8_35.

[PM23] A. Peruffo and M. Mazo Jr. ‘Data-Driven Abstractions With Probabilistic
Guarantees for Linear PETC Systems’. IEEE Control. Syst. Lett. 7 (2023),
pages 115–120. doi: 10.1109/LCSYS.2022.3186187.

[PN17] A. S. Polydoros and L. Nalpantidis. ‘Survey of Model-Based Reinforce-
ment Learning: Applications on Robotics’. J. Intell. Robotic Syst. 86.2 (2017),
pages 153–173. doi: 10.1007/S10846-017-0468-Y.

[Pnu77] A. Pnueli. ‘The Temporal Logic of Programs’. FOCS. IEEE Computer Society,
1977, pages 46–57. doi: 10.1109/SFCS.1977.32.

[PP18] L. Petrucci and J. van de Pol. ‘Parameter Synthesis Algorithms for Para-
metric Interval Markov Chains’. FORTE. Volume 10854. Lecture Notes in
Computer Science. Springer, 2018, pages 121–140. doi: 10.1007/978-3-
319-92612-4_7.

[Pré03] A. Prékopa. ‘Probabilistic Programming’. Stochastic Programming. Volume 10.
Handbooks in Operations Research and Management Science. Elsevier,
2003, pages 267–351. doi: https : / / doi . org / 10 . 1016 / S0927 -
0507(03)10005-9.

[Pré13] A. Prékopa. ‘Stochastic programming’. Volume 324. Springer Science &
Business Media, 2013. doi: 10.1007/978-94-017-3087-7.

https://doi.org/10.1613/JAIR.2447
https://doi.org/10.1109/ICCPS.2018.00026
https://proceedings.neurips.cc/paper_files/paper/2009/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://dl.acm.org/doi/10.5555/1630659.1630806
https://doi.org/10.1109/TEC.2007.914174
https://doi.org/10.5555/3398761.3398926
https://doi.org/10.1007/978-3-642-39799-8_35
https://doi.org/10.1109/LCSYS.2022.3186187
https://doi.org/10.1007/S10846-017-0468-Y
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-319-92612-4_7
https://doi.org/10.1007/978-3-319-92612-4_7
https://doi.org/https://doi.org/10.1016/S0927-0507(03)10005-9
https://doi.org/https://doi.org/10.1016/S0927-0507(03)10005-9
https://doi.org/10.1007/978-94-017-3087-7

A
299

[PSQ13] S. Park, E. Serpedin and K. A. Qaraqe. ‘Gaussian Assumption: The Least
Favorable but the Most Useful [Lecture Notes]’. IEEE Signal Process. Mag.
30.3 (2013), pages 183–186. doi: 10.1109/MSP.2013.2238691.

[Put94] M. L. Puterman. ‘Markov Decision Processes: Discrete Stochastic Dynamic
Programming’. Wiley Series in Probability and Statistics. Wiley, 1994. doi:
10.1002/9780470316887.

[PWHA16] E. Polgreen, V. B. Wijesuriya, S. Haesaert and A. Abate. ‘Data-Efficient
Bayesian Verification of Parametric Markov Chains’. QEST. Volume 9826.
Lecture Notes in Computer Science. Springer, 2016, pages 35–51. doi:
10.1007/978-3-319-43425-4_3.

[PWHA17] E. Polgreen, V. B. Wijesuriya, S. Haesaert and A. Abate. ‘Automated
Experiment Design for Data-Efficient Verification of Parametric Markov
Decision Processes’. QEST. Volume 10503. Lecture Notes in Computer
Science. Springer, 2017, pages 259–274. doi: 10.1007/978-3-319-
66335-7_16.

[PWHO+20] E. van der Pol, D. E. Worrall, H. van Hoof, F. A. Oliehoek and M. Welling.
‘MDP Homomorphic Networks: Group Symmetries in Reinforcement Learn-
ing’. NeurIPS. 2020. doi: 10.48550/arXiv.2006.16908.

[QDJJ+16] T. Quatmann, C. Dehnert, N. Jansen, S. Junges and J. Katoen. ‘Parameter
Synthesis for Markov Models: Faster Than Ever’. ATVA. Volume 9938. Lec-
ture Notes in Computer Science. 2016, pages 50–67. doi: 10.1007/978-
3-319-46520-3_4.

[RAM23] L. Rickard, A. Abate and K. Margellos. ‘Learning Robust Policies for Uncer-
tain Parametric Markov Decision Processes’. CoRR abs/2312.06344 (2023).
doi: 10.48550/arXiv.2312.06344.

[RB01] B. Ravindran and A. G. Barto. ‘Symmetries and Model Minimization in
Markov Decision Processes’. Technical report. 2001. url: https://dl.
acm.org/doi/10.5555/897533.

[RB03] B. Ravindran and A. G. Barto. ‘SMDP Homomorphisms: An Algebraic
Approach to Abstraction in Semi-Markov Decision Processes’. IJCAI. Mor-
gan Kaufmann, 2003, pages 1011–1018. url: http : / / ijcai . org /
Proceedings/03/Papers/145.pdf.

[RBNS+19] E. J. J. Ruijters, C. E. Budde, M. C. Nakhaee, M. I. A. Stoelinga, D. Bucur, D.
Hiemstra and S. Schivo. ‘FFORT: A Benchmark Suite for Fault Tree Analysis’.
ESREL. Research Publishing, 2019, pages 878–885. doi: 10.3850/978-
981-11-2724-3_0641-cd.

[RC21] R. Rocchetta and L. G. Crespo. ‘A scenario optimization approach to
reliability-based and risk-based design: Soft-constrained modulation of
failure probability bounds’. Reliab. Eng. Syst. Saf. 216 (2021), page 107900.
doi: 10.1016/J.RESS.2021.107900.

https://doi.org/10.1109/MSP.2013.2238691
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-43425-4_3
https://doi.org/10.1007/978-3-319-66335-7_16
https://doi.org/10.1007/978-3-319-66335-7_16
https://doi.org/10.48550/arXiv.2006.16908
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.48550/arXiv.2312.06344
https://dl.acm.org/doi/10.5555/897533
https://dl.acm.org/doi/10.5555/897533
http://ijcai.org/Proceedings/03/Papers/145.pdf
http://ijcai.org/Proceedings/03/Papers/145.pdf
https://doi.org/10.3850/978-981-11-2724-3_0641-cd
https://doi.org/10.3850/978-981-11-2724-3_0641-cd
https://doi.org/10.1016/J.RESS.2021.107900

300 A Bibliography

[RGRK+09] K. D. Rao, V. Gopika, V. V. S. S. Rao, H. S. Kushwaha, A. K. Verma and A.
Srividya. ‘Dynamic fault tree analysis usingMonte Carlo simulation in prob-
abilistic safety assessment’. Reliab. Eng. Syst. Saf. 94.4 (2009), pages 872–
883. doi: 10.1016/J.RESS.2008.09.007.

[RLH21] M. Rigter, B. Lacerda and N. Hawes. ‘Risk-Averse Bayes-Adaptive Rein-
forcement Learning’. NeurIPS. 2021, pages 1142–1154. doi: 10.48550/
arXiv.2102.05762.

[RM19] H. Rahimian and S. Mehrotra. ‘Distributionally Robust Optimization: A
Review’. CoRR abs/1908.05659 (2019). doi: 10.48550/arXiv.1908.
05659.

[RN10] S. J. Russell and P. Norvig. ‘Artificial Intelligence - A Modern Approach,
Third International Edition’. Pearson Education, 2010. doi: https://
people.engr.tamu.edu/guni/csce421/files/AI_Russell_

Norvig.pdf.
[RNBM+22] R. Roberts, T. Neupane, L. Buecherl, C. J. Myers and Z. Zhang. ‘STAMINA

2.0: Improving Scalability of Infinite-State Stochastic Model Checking’. VM-
CAI. Volume 13182. Lecture Notes in Computer Science. Springer, 2022,
pages 319–331. doi: 10.1007/978-3-030-94583-1_16.

[RPM23] L. Romao, A. Papachristodoulou and K.Margellos. ‘On the Exact Feasibility
of Convex Scenario Programs With Discarded Constraints’. IEEE Trans.
Autom. Control. 68.4 (2023), pages 1986–2001. doi: 10.1109/TAC.2022.
3165320.

[RPT16] P. Reist, P. Preiswerk and R. Tedrake. ‘Feedback-motion-planning with
simulation-based LQR-trees’. Int. J. Robotics Res. 35.11 (2016), pages 1393–
1416. doi: 10.1177/0278364916647192.

[RRBS19] E. Ruijters, D. Reijsbergen, P. de Boer and M. Stoelinga. ‘Rare event simu-
lation for dynamic fault trees’. Reliab. Eng. Syst. Saf. 186 (2019), pages 220–
231. doi: 10.1016/J.RESS.2019.02.004.

[RS03] A. Ruszczyński andA. Shapiro. ‘Stochastic ProgrammingModels’. Stochastic
Programming. Volume 10. Handbooks in Operations Research and Man-
agement Science. Elsevier, 2003, pages 1–64. doi: https://doi.org/
10.1016/S0927-0507(03)10001-1.

[RS15] E. Ruijters and M. Stoelinga. ‘Fault tree analysis: A survey of the state-
of-the-art in modeling, analysis and tools’. Comput. Sci. Rev. 15 (2015),
pages 29–62. doi: 10.1016/J.COSREV.2015.03.001.

[RSA22] U. Rosolia, A. Singletary and A. D. Ames. ‘Unified Multirate Control: From
Low-Level Actuation to High-Level Planning’. IEEE Trans. Autom. Control.
67.12 (2022), pages 6627–6640. doi: 10.1109/TAC.2022.3184664.

[Rud+64] W. Rudin et al. ‘Principles of mathematical analysis’. Volume 3. McGraw-
hill New York, 1964. url: https : / / www . mheducation . com /

highered / product / principles - mathematical - analysis -

rudin/M9780070542358.html.

https://doi.org/10.1016/J.RESS.2008.09.007
https://doi.org/10.48550/arXiv.2102.05762
https://doi.org/10.48550/arXiv.2102.05762
https://doi.org/10.48550/arXiv.1908.05659
https://doi.org/10.48550/arXiv.1908.05659
https://doi.org/https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf
https://doi.org/https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf
https://doi.org/https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf
https://doi.org/10.1007/978-3-030-94583-1_16
https://doi.org/10.1109/TAC.2022.3165320
https://doi.org/10.1109/TAC.2022.3165320
https://doi.org/10.1177/0278364916647192
https://doi.org/10.1016/J.RESS.2019.02.004
https://doi.org/https://doi.org/10.1016/S0927-0507(03)10001-1
https://doi.org/https://doi.org/10.1016/S0927-0507(03)10001-1
https://doi.org/10.1016/J.COSREV.2015.03.001
https://doi.org/10.1109/TAC.2022.3184664
https://www.mheducation.com/highered/product/principles-mathematical-analysis-rudin/M9780070542358.html
https://www.mheducation.com/highered/product/principles-mathematical-analysis-rudin/M9780070542358.html
https://www.mheducation.com/highered/product/principles-mathematical-analysis-rudin/M9780070542358.html

A
301

[RWR17] G. Reissig, A. Weber and M. Rungger. ‘Feedback Refinement Relations for
the Synthesis of Symbolic Controllers’. IEEE Trans. Autom. Control. 62.4
(2017), pages 1781–1796. doi: 10.1109/TAC.2016.2593947.

[SA13] S. E. Z. Soudjani and A. Abate. ‘Adaptive and Sequential Gridding Proced-
ures for the Abstraction and Verification of Stochastic Processes’. SIAM J.
Appl. Dyn. Syst. 12.2 (2013), pages 921–956. doi: 10.1137/120871456.

[SAP24] Y. Schnitzer, A. Abate and D. Parker. ‘Certifiably Robust Policies for Un-
certain Parametric Environments’. CoRR abs/2408.03093 (2024). doi: 10.
48550/ARXIV.2408.03093.

[SB98] R. S. Sutton and A. G. Barto. ‘Reinforcement learning - an introduction’.
Adaptive computation and machine learning. MIT Press, 1998. url:
https://mitpress.mit.edu/9780262039246/reinforcement-

learning/.
[SBHH17] D. Scheftelowitsch, P. Buchholz, V. Hashemi and H. Hermanns. ‘Multi-

Objective Approaches to Markov Decision Processes with Uncertain Trans-
ition Parameters’. VALUETOOLS. ACM, 2017, pages 44–51. doi: 10.1145/
3150928.3150945.

[SBSG+11] S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S. A. Smolka and
E. Zadok. ‘Runtime Verification with State Estimation’. RV. Volume 7186.
Lecture Notes in Computer Science. Springer, 2011, pages 193–207. doi:
10.1007/978-3-642-29860-8_15.

[Seg95] R. Segala. ‘Modeling and verification of randomized distributed real-time
systems’. PhD thesis. Massachusetts Institute of Technology, Cambridge,
MA, USA, 1995. url: https://groups.csail.mit.edu/tds/papers/
Segala/phd1.pdf.

[SFCR16] G. Su, Y. Feng, T. Chen and D. S. Rosenblum. ‘Asymptotic Perturbation
Bounds for Probabilistic Model Checking with Empirically Determined
Probability Parameters’. IEEE Trans. Software Eng. 42.7 (2016), pages 623–
639. doi: 10.1109/TSE.2015.2508444.

[Shm04] V. Shmatikov. ‘Probabilistic analysis of an anonymity system’. J. Comput.
Secur. 12.3-4 (2004), pages 355–377. doi: 10.3233/JCS-2004-123-403.

[SJCT20] M. Suilen, N. Jansen, M. Cubuktepe and U. Topcu. ‘Robust Policy Synthesis
for Uncertain POMDPs via Convex Optimization’. IJCAI. ijcai.org, 2020,
pages 4113–4120. doi: 10.24963/IJCAI.2020/569.

[SJK21] J. Spel, S. Junges and J. Katoen. ‘Finding Provably Optimal Markov Chains’.
TACAS (1). Volume 12651. Lecture Notes in Computer Science. Springer,
2021, pages 173–190. doi: 10.1007/978-3-030-72016-2_10.

[SKCC+15] M. Svorenová, J. Kretínský, M. Chmelik, K. Chatterjee, I. Cerná and C.
Belta. ‘Temporal logic control for stochastic linear systems using abstraction
refinement of probabilistic games’. HSCC. ACM, 2015, pages 259–268. doi:
10.1145/2728606.2728608.

https://doi.org/10.1109/TAC.2016.2593947
https://doi.org/10.1137/120871456
https://doi.org/10.48550/ARXIV.2408.03093
https://doi.org/10.48550/ARXIV.2408.03093
https://mitpress.mit.edu/9780262039246/reinforcement-learning/
https://mitpress.mit.edu/9780262039246/reinforcement-learning/
https://doi.org/10.1145/3150928.3150945
https://doi.org/10.1145/3150928.3150945
https://doi.org/10.1007/978-3-642-29860-8_15
https://groups.csail.mit.edu/tds/papers/Segala/phd1.pdf
https://groups.csail.mit.edu/tds/papers/Segala/phd1.pdf
https://doi.org/10.1109/TSE.2015.2508444
https://doi.org/10.3233/JCS-2004-123-403
https://doi.org/10.24963/IJCAI.2020/569
https://doi.org/10.1007/978-3-030-72016-2_10
https://doi.org/10.1145/2728606.2728608

302 A Bibliography

[SKD21] L. N. Steimle, D. L. Kaufman and B. T. Denton. ‘Multi-model Markov
decision processes’. IISE Trans. 53.10 (2021), pages 1124–1139. doi: 10.
1080/24725854.2021.1895454.

[SKLT11] S. Summers, M. Kamgarpour, J. Lygeros and C. J. Tomlin. ‘A stochastic
reach-avoid problem with random obstacles’. HSCC. ACM, 2011, pages 251–
260. doi: 10.1145/1967701.1967738.

[Sku09] D. Skulj. ‘Discrete time Markov chains with interval probabilities’. Int. J.
Approx. Reason. 50.8 (2009), pages 1314–1329. doi: 10.1016/J.IJAR.
2009.06.007.

[SL10] S. Summers and J. Lygeros. ‘Verification of discrete time stochastic hybrid
systems: A stochastic reach-avoid decision problem’. Autom. 46.12 (2010),
pages 1951–1961. doi: 10.1016/J.AUTOMATICA.2010.08.006.

[SL95] R. Segala and N. A. Lynch. ‘Probabilistic Simulations for Probabilistic
Processes’. Nord. J. Comput. 2.2 (1995), pages 250–273. doi: 10.1007/978-
3-540-48654-1_35.

[SLO22] R. A. N. Starre, M. Loog and F. A. Oliehoek. ‘Model-Based Reinforce-
ment Learning with State Abstraction: A Survey’. BNAIC/BENELEARN.
Volume 1805. Communications in Computer and Information Science.
Springer, 2022, pages 133–148. doi: 10.1007/978-3-031-39144-6_9.

[Smi13] A. Smith. ‘Sequential Monte Carlo methods in practice’. Springer Science
& Business Media, 2013. doi: 10.1007/978-1-4757-3437-9.

[Smi14] R. C. Smith. ‘Uncertainty Quantification - Theory, Implementation, and
Applications’. Computational science and engineering. SIAM, 2014. doi:
10.1137/1.9781611973228.

[Söd02] T. Söderström. ‘Discrete-time stochastic systems: estimation and control’.
Springer Science & Business Media, 2002. doi: 10.1007/978-1-4471-
0101-7.

[SPK13] G. Shani, J. Pineau and R. Kaplow. ‘A survey of point-based POMDP solvers’.
Auton. Agents Multi Agent Syst. 27.1 (2013), pages 1–51. doi: 10.1007/
S10458-012-9200-2.

[SSAB+19] C. Sánchez, G. Schneider, W. Ahrendt, E. Bartocci, D. Bianculli, C.
Colombo, Y. Falcone, A. Francalanza, S. Krstic, J. M. Lourenço, D. Nick-
ovic, G. J. Pace, J. Rufino, J. Signoles, D. Traytel and A. Weiss. ‘A survey
of challenges for runtime verification from advanced application domains
(beyond software)’. Formal Methods Syst. Des. 54.3 (2019), pages 279–335.
doi: 10.1007/S10703-019-00337-W.

[SSPJ22] M. Suilen, T. D. Simão, D. Parker and N. Jansen. ‘Robust Anytime Learning
of Markov Decision Processes’. NeurIPS. 2022. doi: 10.48550/arXiv.
2205.15827.

[STBR11] S. L. Smith, J. Tumova, C. Belta and D. Rus. ‘Optimal path planning for
surveillance with temporal-logic constraints’. Int. J. Robotics Res. 30.14
(2011), pages 1695–1708. doi: 10.1177/0278364911417911.

https://doi.org/10.1080/24725854.2021.1895454
https://doi.org/10.1080/24725854.2021.1895454
https://doi.org/10.1145/1967701.1967738
https://doi.org/10.1016/J.IJAR.2009.06.007
https://doi.org/10.1016/J.IJAR.2009.06.007
https://doi.org/10.1016/J.AUTOMATICA.2010.08.006
https://doi.org/10.1007/978-3-540-48654-1_35
https://doi.org/10.1007/978-3-540-48654-1_35
https://doi.org/10.1007/978-3-031-39144-6_9
https://doi.org/10.1007/978-1-4757-3437-9
https://doi.org/10.1137/1.9781611973228
https://doi.org/10.1007/978-1-4471-0101-7
https://doi.org/10.1007/978-1-4471-0101-7
https://doi.org/10.1007/S10458-012-9200-2
https://doi.org/10.1007/S10458-012-9200-2
https://doi.org/10.1007/S10703-019-00337-W
https://doi.org/10.48550/arXiv.2205.15827
https://doi.org/10.48550/arXiv.2205.15827
https://doi.org/10.1177/0278364911417911

A
303

[Ste94] W. J. Stewart. ‘Introduction to the numerical solution of Markov Chains’.
Princeton University Press, 1994. doi: 10.2307/j.ctv182jsw5.

[Sto02] M. Stoelinga. ‘An Introduction to Probabilistic Automata’. Bull. EATCS
78 (2002), pages 176–198. url: https : / / web . archive . org /

web/20170829004616id_/http://wwwhome.ewi.utwente.nl/

~marielle/papers/pa.pdf.
[Str23] G. Strang. ‘Introduction to linear algebra’. 6th. SIAM, 2023. url: https:

//math.mit.edu/~gs/linearalgebra/ila6/indexila6.html.
[Sul15] T. J. Sullivan. ‘Introduction to uncertainty quantification’. Volume 63.

Springer, 2015. doi: 10.1007/978-3-319-23395-6.
[SV05] M. T. J. Spaan and N. Vlassis. ‘Perseus: Randomized Point-based Value

Iteration for POMDPs’. J. Artif. Intell. Res. 24 (2005), pages 195–220. doi:
10.1613/JAIR.1659.

[SVA05] K. Sen, M. Viswanathan and G. Agha. ‘On Statistical Model Checking
of Stochastic Systems’. CAV. Volume 3576. Lecture Notes in Computer
Science. Springer, 2005, pages 266–280. doi: 10.1007/11513988_26.

[SVA06] K. Sen, M. Viswanathan and G. Agha. ‘Model-Checking Markov Chains
in the Presence of Uncertainties’. TACAS. Volume 3920. Lecture Notes
in Computer Science. Springer, 2006, pages 394–410. doi: 10.1007/
11691372_26.

[SVAO19] H. Sartipizadeh, A. P. Vinod, B. Açikmese and M. Oishi. ‘Voronoi Partition-
based Scenario Reduction for Fast Sampling-based Stochastic Reachability
Computation of Linear Systems’. ACC. IEEE, 2019, pages 37–44. doi: 10.
23919/ACC.2019.8814354.

[SZ15] F. Shmarov and P. Zuliani. ‘ProbReach: verified probabilistic delta-
reachability for stochastic hybrid systems’. HSCC. ACM, 2015, pages 134–
139. doi: 10.1145/2728606.2728625.

[SZ23] A. Salamati and M. Zamani. ‘Safety Verification of Stochastic Systems: A
Repetitive Scenario Approach’. IEEE Control. Syst. Lett. 7 (2023), pages 448–
453. doi: 10.1109/LCSYS.2022.3186932.

[Tab09] P. Tabuada. ‘Verification and Control of Hybrid Systems - A Symbolic
Approach’. Springer, 2009. doi: 10.1007/978-1-4419-0224-5.

[TBBB+20] B. Ton, R. Basten, J. Bolte, J. Braaksma, A. Di Bucchianico, P. van de
Calseyde, F. Grooteman, T. Heskes, N. Jansen, W. Teeuw, T. Tinga and
M. Stoelinga. ‘PrimaVera: Synergising Predictive Maintenance’. Applied
Sciences 10.23 (2020). doi: 10.3390/app10238348.

[TBF05] S. Thrun, W. Burgard and D. Fox. ‘Probabilistic robotics’. Intelligent robot-
ics and autonomous agents. MIT Press, 2005. url: https://mitpress.
mit.edu/9780262201629/probabilistic-robotics/.

[TLS21] S. Thiebes, S. Lins and A. Sunyaev. ‘Trustworthy artificial intelligence’.
Electron. Mark. 31.2 (2021), pages 447–464. doi: 10.1007/S12525-020-
00441-4.

https://doi.org/10.2307/j.ctv182jsw5
https://web.archive.org/web/20170829004616id_/http://wwwhome.ewi.utwente.nl/~marielle/papers/pa.pdf
https://web.archive.org/web/20170829004616id_/http://wwwhome.ewi.utwente.nl/~marielle/papers/pa.pdf
https://web.archive.org/web/20170829004616id_/http://wwwhome.ewi.utwente.nl/~marielle/papers/pa.pdf
https://math.mit.edu/~gs/linearalgebra/ila6/indexila6.html
https://math.mit.edu/~gs/linearalgebra/ila6/indexila6.html
https://doi.org/10.1007/978-3-319-23395-6
https://doi.org/10.1613/JAIR.1659
https://doi.org/10.1007/11513988_26
https://doi.org/10.1007/11691372_26
https://doi.org/10.1007/11691372_26
https://doi.org/10.23919/ACC.2019.8814354
https://doi.org/10.23919/ACC.2019.8814354
https://doi.org/10.1145/2728606.2728625
https://doi.org/10.1109/LCSYS.2022.3186932
https://doi.org/10.1007/978-1-4419-0224-5
https://doi.org/10.3390/app10238348
https://mitpress.mit.edu/9780262201629/probabilistic-robotics/
https://mitpress.mit.edu/9780262201629/probabilistic-robotics/
https://doi.org/10.1007/S12525-020-00441-4
https://doi.org/10.1007/S12525-020-00441-4

304 A Bibliography

[TMTR10] R. Tedrake, I. R. Manchester, M. M. Tobenkin and J. W. Roberts. ‘LQR-trees:
Feedback Motion Planning via Sums-of-Squares Verification’. Int. J. Robotics
Res. 29.8 (2010), pages 1038–1052. doi: 10.1177/0278364910369189.

[TP19] A. Tsiamis and G. J. Pappas. ‘Finite Sample Analysis of Stochastic Sys-
tem Identification’. CDC. IEEE, 2019, pages 3648–3654. doi: 10.1109/
CDC40024.2019.9029499.

[TSYA20] A. J. Taylor, A. Singletary, Y. Yue and A. D. Ames. ‘Learning for Safety-
Critical Control with Control Barrier Functions’. L4DC. Volume 120. Pro-
ceedings of Machine Learning Research. PMLR, 2020, pages 708–717. doi:
10.48550/arXiv.1912.10099.

[Vaa17] F. W. Vaandrager. ‘Model learning’. Commun. ACM 60.2 (2017), pages 86–
95. doi: 10.1145/2967606.

[VGO19] A. P. Vinod, J. D. Gleason and M. M. K. Oishi. ‘SReachTools: a MATLAB
stochastic reachability toolbox’. HSCC. ACM, 2019, pages 33–38. doi: 10.
1145/3302504.3311809.

[VGOH+19] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D.
Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. van der
Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E.
Jones, R. Kern, E. Larson, C. Carey, I. Polat, Y. Feng, E. W. Moore, J. Vander-
Plas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt
and SciPy. ‘SciPy 1.0-Fundamental Algorithms for Scientific Computing in
Python’. CoRR abs/1907.10121 (2019). doi: 10.1038/s41592-019-0686-
2.

[VIT22] A. P. Vinod, A. Israel and U. Topcu. ‘On-the-Fly Control of Unknown
Nonlinear Systems With Sublinear Regret’. IEEE Transactions on Automatic
Control (2022), pages 1–13. doi: 10.1109/TAC.2022.3186425.

[VJK18] M. Volk, S. Junges and J. Katoen. ‘Fast Dynamic Fault Tree Analysis
by Model Checking Techniques’. IEEE Trans. Ind. Informatics 14.1 (2018),
pages 370–379. doi: 10.1109/TII.2017.2710316.

[Vol22] M. Volk. ‘Dynamic fault trees: semantics, analysis and applications’. PhD
thesis. Dissertation, RWTH Aachen University, 2022, 2022. doi: 10 .
18154/RWTH-2023-04092.

[VT24] M. Vahs and J. Tumova. ‘Risk-aware Control for Robots with Non-Gaussian
Belief Spaces’. ICRA. IEEE, 2024, pages 11661–11667. doi: 10.1109/
ICRA57147.2024.10611412.

[WA19] V. B. Wijesuriya and A. Abate. ‘Bayes-Adaptive Planning for Data-Efficient
Verification of Uncertain Markov Decision Processes’. QEST. Volume 11785.
Lecture Notes in Computer Science. Springer, 2019, pages 91–108. doi:
10.1007/978-3-030-30281-8_6.

[WB01] G. Welch and G. Bishop. ‘An introduction to the Kalman filter’. Proc of
SIGGRAPH, Course 8.27599-23175 (2001), page 41. url: https://www.
cs.unc.edu/~welch/media/pdf/kalman_intro.pdf.

https://doi.org/10.1177/0278364910369189
https://doi.org/10.1109/CDC40024.2019.9029499
https://doi.org/10.1109/CDC40024.2019.9029499
https://doi.org/10.48550/arXiv.1912.10099
https://doi.org/10.1145/2967606
https://doi.org/10.1145/3302504.3311809
https://doi.org/10.1145/3302504.3311809
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/TAC.2022.3186425
https://doi.org/10.1109/TII.2017.2710316
https://doi.org/10.18154/RWTH-2023-04092
https://doi.org/10.18154/RWTH-2023-04092
https://doi.org/10.1109/ICRA57147.2024.10611412
https://doi.org/10.1109/ICRA57147.2024.10611412
https://doi.org/10.1007/978-3-030-30281-8_6
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

A
305

[Wil91] D. Williams. ‘Probability with Martingales’. Cambridge mathemat-
ical textbooks. Cambridge University Press, 1991. doi: 10 . 1017 /

CBO9780511813658.
[WJPK19] T. Winkler, S. Junges, G. A. Pérez and J. Katoen. ‘On the Complex-

ity of Reachability in Parametric Markov Decision Processes’. CONCUR.
Volume 140. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019, 14:1–14:17. doi: 10.4230/LIPICS.CONCUR.2019.14.

[WJWJ+21] L. Winterer, S. Junges, R. Wimmer, N. Jansen, U. Topcu, J. Katoen and B.
Becker. ‘Strategy Synthesis for POMDPs in Robot Planning via Game-Based
Abstractions’. IEEE Trans. Autom. Control. 66.3 (2021), pages 1040–1054.
doi: 10.1109/TAC.2020.2990140.

[WKR13] W. Wiesemann, D. Kuhn and B. Rustem. ‘Robust Markov Decision Pro-
cesses’. Math. Oper. Res. 38.1 (2013), pages 153–183. doi: 10.1287/MOOR.
1120.0566.

[WKS14] W. Wiesemann, D. Kuhn and M. Sim. ‘Distributionally Robust Convex
Optimization’. Oper. Res. 62.6 (2014), pages 1358–1376. doi: 10.1287/
OPRE.2014.1314.

[WL24] B. Wooding and A. Lavaei. ‘IMPaCT: A Parallelized Software Tool for IMDP
Construction and Controller Synthesis with Convergence Guarantees’.HSCC.
ACM, 2024, 30:1–30:2. doi: 10.1145/3641513.3652532.

[Wol20] L. A. Wolsey. ‘Integer programming’. John Wiley & Sons, 2020. doi: 10.
1002/9781119606475.

[WTM12] E. M. Wolff, U. Topcu and R. M. Murray. ‘Robust control of uncertain
Markov Decision Processes with temporal logic specifications’. CDC. IEEE,
2012, pages 3372–3379. doi: 10.1109/CDC.2012.6426174.

[WW99] D. S. Wilks and R. L. Wilby. ‘The weather generation game: a review of
stochastic weather models’. Progress in Physical Geography: Earth and Envir-
onment 23.3 (1999), pages 329–357. doi: 10.1177/030913339902300302.

[XGAM+20] Z. Xu, I. Gavran, Y. Ahmad, R. Majumdar, D. Neider, U. Topcu and B.
Wu. ‘Joint Inference of Reward Machines and Policies for Reinforcement
Learning’. ICAPS. AAAI Press, 2020, pages 590–598. doi: 10.48550/
arXiv.1909.05912.

[XM10] H. Xu and S. Mannor. ‘Distributionally Robust Markov Decision Processes’.
NIPS. Curran Associates, Inc., 2010, pages 2505–2513. url: https://
proceedings . neurips . cc / paper _ files / paper / 2010 / file /

19f3cd308f1455b3fa09a282e0d496f4-Paper.pdf.
[XM12] H. Xu and S. Mannor. ‘Distributionally Robust Markov Decision Processes’.

Math. Oper. Res. 37.2 (2012), pages 288–300. doi: 10.1287/MOOR.1120.
0540.

[Yed14] R. K. Yedavalli. ‘Robust control of uncertain dynamic systems’. AMC 10
(2014), page 12. doi: 10.1007/978-1-4614-9132-3.

https://doi.org/10.1017/CBO9780511813658
https://doi.org/10.1017/CBO9780511813658
https://doi.org/10.4230/LIPICS.CONCUR.2019.14
https://doi.org/10.1109/TAC.2020.2990140
https://doi.org/10.1287/MOOR.1120.0566
https://doi.org/10.1287/MOOR.1120.0566
https://doi.org/10.1287/OPRE.2014.1314
https://doi.org/10.1287/OPRE.2014.1314
https://doi.org/10.1145/3641513.3652532
https://doi.org/10.1002/9781119606475
https://doi.org/10.1002/9781119606475
https://doi.org/10.1109/CDC.2012.6426174
https://doi.org/10.1177/030913339902300302
https://doi.org/10.48550/arXiv.1909.05912
https://doi.org/10.48550/arXiv.1909.05912
https://proceedings.neurips.cc/paper_files/paper/2010/file/19f3cd308f1455b3fa09a282e0d496f4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/19f3cd308f1455b3fa09a282e0d496f4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/19f3cd308f1455b3fa09a282e0d496f4-Paper.pdf
https://doi.org/10.1287/MOOR.1120.0540
https://doi.org/10.1287/MOOR.1120.0540
https://doi.org/10.1007/978-1-4614-9132-3

306 A Bibliography

[YS06] H. L. S. Younes and R. G. Simmons. ‘Statistical probabilistic model check-
ing with a focus on time-bounded properties’. Inf. Comput. 204.9 (2006),
pages 1368–1409. doi: 10.1016/J.IC.2006.05.002.

[YSHL17] N. Ye, A. Somani, D. Hsu andW. S. Lee. ‘DESPOT: Online POMDP Planning
with Regularization’. J. Artif. Intell. Res. 58 (2017), pages 231–266. doi:
10.1613/JAIR.5328.

[YTCB+12] B. Yordanov, J. Tumova, I. Cerna, J. Barnat and C. Belta. ‘Temporal Logic
Control of Discrete-Time Piecewise Affine Systems’. IEEE Trans. Autom. Con-
trol. 57.6 (2012), pages 1491–1504. doi: 10.1109/TAC.2011.2178328.

[ZD98] K. Zhou and J. C. Doyle. ‘Essentials of robust control’. Volume 104. Prentice
hall Upper Saddle River, NJ, 1998. url: https://www.ece.lsu.edu/
kemin/essentials.htm.

[ZG21] M. Zanon and S. Gros. ‘Safe Reinforcement Learning Using Robust MPC’.
IEEE Trans. Autom. Control. 66.8 (2021), pages 3638–3652. doi: 10.1109/
TAC.2020.3024161.

[ZLHC23b] D. Zikelic, M. Lechner, T. A. Henzinger and K. Chatterjee. ‘Learning
Control Policies for Stochastic Systems with Reach-Avoid Guarantees’. AAAI.
AAAI Press, 2023, pages 11926–11935. doi: 10.1609/AAAI.V37I10.
26407.

[ZSRH+12] L. Zhang, Z. She, S. Ratschan, H. Hermanns and E. M. Hahn. ‘Safety
Verification for Probabilistic Hybrid Systems’. Eur. J. Control 18.6 (2012),
pages 572–587. doi: 10.3166/EJC.18.572-587.

https://doi.org/10.1016/J.IC.2006.05.002
https://doi.org/10.1613/JAIR.5328
https://doi.org/10.1109/TAC.2011.2178328
https://www.ece.lsu.edu/kemin/essentials.htm
https://www.ece.lsu.edu/kemin/essentials.htm
https://doi.org/10.1109/TAC.2020.3024161
https://doi.org/10.1109/TAC.2020.3024161
https://doi.org/10.1609/AAAI.V37I10.26407
https://doi.org/10.1609/AAAI.V37I10.26407
https://doi.org/10.3166/EJC.18.572-587

B

307

B Index

reach-avoid specification, 55

absorbing state, 30, 85
abstraction, 12, 85, 244, 245

refinement, 247
atomic proposition, 29

backward reachable set, 86, 122
Bayes’ rule, 237
binary relation, 65

lifted relation, 67
single-valued, 65
strict, 65

Borel space, 51
boundary, 23

chance-constrained optimization
problem, 155

closure, 23
consistent scheduler, 241
continuous stochastic logic, 201

path formula, 201
state formula, 201

continuous-time Markov chain, 198
colors, 237
exit rates, 198
path, 200
probability measure, 200
residence time, 198
transient distribution, 199
uniformization, 204

convex function, 25
convex hull, 24
convex polytope, 24, 176

parametric, 177
CTMC monitoring, 236

conditioned MDP, 243
evidence, 237
imprecise evidence, 238

path consistent with evidence, 237
unfolded MDP, 241

deadlock, 30
diagonal matrix, 24
discount factor, 37
discrete-time Markov chain, 30

induced, 32
robust, 41

discrete-time stochastic system, 51
execution, 54
induced, 118
linear, 82
Markov policy, 53
probability measure, 54
process noise, 52
robust, 118
sample path, 54
time-invariant, 51

epistemic error, 121
evaluation problem, 4
evidence graph, 240

fault tree, 201, 228, 250
filtration, 27

natural, 27

gradient, 178

Hoeffding’s inequality, 99, 129, 190

identity matrix, 24
indicator function, 24
interface function, 72

robust, 77
interior, 23
interval MDP, 41

Markov decision process, 29
optimal scheduler, 37

308 INDEX

path, 31
probability measure, 33

measurable function, 26
measurable space, 26
measure (for CTMC), 203

expected cumulative reward, 204
steady-state probability, 203
transient probability, 203

measure (for MDP), 35
reach-avoid probability, 36
expected cumulative reward, 36
reachability probability, 36

nature, 42
Markov, 43
optimistic, 44
pessimistic, 44
stationary, 43

optimization problem, 24
convex, 25

parameter synthesis, 148
parametric CTMC, 205

parameter space, 206
solution function, 207
vector-valued solution function,

212
parametric MDP, 144

parameter instantiation, 145
parameter space, 145
parametric Markov chain, 144
solution function, 146

parametric robust Markov chain, 177
robust solution function, 178

partial derivative, 178
partial map, 24
partial transition function, 29
partition, 65, 85, 245
prediction region, 213

containment probability, 213
probabilistic computation tree logic, 34

path formula, 34
state formula, 34

probabilistic simulation relation, 67, 89
alternating, 75, 102

probability distribution
Dirac, 26
discrete, 26

probability space, 26
pseudoinverse, 24

random variable, 26
reach-avoid specification

consistent, 66
equivalent, 66

robust MDP, 41
rectangularity, 41
robust value, 43
uncertainty set, 41

robust optimization, 13

satisfaction probability, 35
scenario approach, 14, 91, 128, 156,

215
complexity, 219
scenario optimization problem, 14,

156, 216
scheduler, 31

deterministic, 32
Markov scheduler, 32
randomized, 31
stationary, 32

self-loop, 30
set-bounded parameter uncertainty,

119
state-weight function, 238
stochastic kernel, 54
stochastic process, 2, 27

adapted, 27
stochasticity, 2
synthesis problem, 4

target point, 86
target set, 121
transition, 30, 198

uncertain parametric CTMC, 211
uncertain parametric MDP, 153

satisfaction probability, 154
uncertainty set, 7

value iteration, 38

C

309

C Research Data Management
This thesis research has been carried out under the research data management policy of
the Institute for Computing and Information Science of Radboud University, located in
Nijmegen, The Netherlands.1

The following code repositories have been produced during this Ph.D. research:
• Chapters 6 and 7: Thom Badings, Alessandro Abate, Nils Jansen, David Parker,
Hasan Poonawala, Licio Romao and Marielle Stoelinga; https://doi.org/10.
5281/zenodo.13348782 (Python source code)

• Chapter 9: Thom Badings, Murat Cubuktepe, Nils Jansen, Sebastian Junges, Joost-
Pieter Katoen and Ufuk Topcu; https://doi.org/10.5281/zenodo.6674059
(Docker container and Python source code)

• Chapter 10: Thom Badings, Sebastian Junges, Ahmadreza Marandi, Ufuk Topcu and
Nils Jansen; https://doi.org/10.5281/zenodo.7864260 (Docker container
and Python source code)

• Chapter 12: Thom Badings, Nils Jansen, Sebastian Junges, Marielle Stoelinga and
Matthias Volk; https://doi.org/10.5281/zenodo.6523863 (Docker container
and Python source code)

• Chapter 13: Thom Badings, Matthias Volk, Sebastian Junges, Marielle Stoelinga and
Nils Jansen; https://doi.org/10.5281/zenodo.10438984 (Docker container
and Python source code)

For a more detailed overview of these code repositories and the tools and implementa-
tions they contain, we refer to Chapter 14.

1ru.nl/icis/research-data-management/, last accessed August 19th, 2024.

https://doi.org/10.5281/zenodo.13348782
https://doi.org/10.5281/zenodo.13348782
https://doi.org/10.5281/zenodo.6674059
https://doi.org/10.5281/zenodo.7864260
https://doi.org/10.5281/zenodo.6523863
https://doi.org/10.5281/zenodo.10438984
https://www.ru.nl/icis/research-data-management/

D

311

D About the Author
Thom Badings was born on July 17, 1995 in Zwolle, the
Netherlands. After his secondary education at the Me-
ander College in Zwolle, he moved to Groningen to study
Industrial Engineering and Management at the University
of Groningen. In 2017, he obtained his Bachelor of Science
degree with a double specialization, as well as the Hon-
ours College Bachelor’s program. Thom continued with a
master’s in Industrial Engineering and Management at the
same university, which he completed in 2019 with a cum
laude distinction. He followed a specialization in smart
systems in control and automation, and his master’s thesis
was on the topic of model predictive control for power
systems with uncertain electricity generation.

Thom started his Ph.D. research in 2020 at Radboud University in Nijmegen, the
Netherlands, under the supervision of Prof. Nils Jansen and Prof. Marielle Stoelinga.
He is part of PrimaVera, an academic research consortium on the topic of predictive
maintenance. Thom’s research interests are broadly on the intersection between con-
trol theory, artificial intelligence, and formal methods. His Ph.D. research focused on
developing novel verification methods for proving properties about the behavior of
stochastic systems in the presence of uncertainty. With his research, Thom aims to
develop methods that can be used to provide rigorous mathematical garantuees about
properties of safety, reliability, and performance of complex systems, even if no perfect
model of the system is available.

In 2022, he received a distinguished paper award at AAAI, one of the leading con-
ferences in artificial intelligence. During his Ph.D., Thom has obtained the University
Teaching Qualification (UTQ) and has taught in several courses at both bachelor’s and
master’s level. Since November 2024, Thom is a postdoctoral research associate with
the Department of Computer Science at the University of Oxford, where he works
with Prof. Alessandro Abate on research about understanding decision making under
uncertainty in artificial intelligence.

Titles in the IPA Dissertation Series since 2022

A. Fedotov. Verification Techniques for
xMAS. Faculty of Mathematics and Com-
puter Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled Auto-
mated Reasoning. Faculty of Mathematics
and Computer Science, TU/e. 2022-02

M. Safari. Correct Optimized GPU Pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2022-03

M. Verano Merino. Engineering
Language-Parametric End-User Program-
ming Environments for DSLs. Faculty
of Mathematics and Computer Science,
TU/e. 2022-04

G.F.C. Dupont. Network Security Mon-
itoring in Environments where Digital
and Physical Safety are Critical. Faculty
of Mathematics and Computer Science,
TU/e. 2022-05

T.M. Soethout. Banking on Domain
Knowledge for Faster Transactions. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2022-06

P. Vukmirović. Implementation of
Higher-Order Superposition. Faculty of Sci-
ences, Department of Computer Science,
VU. 2022-07

J. Wagemaker. Extensions of (Concur-
rent) Kleene Algebra. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2022-08

R. Janssen. Refinement and Partiality
for Model-Based Testing. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2022-09

M. Laveaux. Accelerated Verification of
Concurrent Systems. Faculty of Mathemat-
ics and Computer Science, TU/e. 2022-10

S. Kochanthara. A Changing Landscape:
On Safety &Open Source in Automated and
Connected Driving. Faculty of Mathemat-
ics and Computer Science, TU/e. 2023-01

L.M. Ochoa Venegas. Break the Code?
Breaking Changes andTheir Impact on Soft-
ware Evolution. Faculty of Mathematics
and Computer Science, TU/e. 2023-02

N. Yang. Logs and models in engineering
complex embedded production software sys-
tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2023-03

J. Cao. An Independent Timing Analysis
for Credit-Based Shaping in Ethernet TSN.
Faculty ofMathematics and Computer Sci-
ence, TU/e. 2023-04

K. Dokter. Scheduled Protocol Program-
ming. Faculty of Mathematics and Nat-
ural Sciences, UL. 2023-05

J. Smits. Strategic Language Workbench
Improvements. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2023-06

A. Arslanagić. Minimal Structures for
Program Analysis and Verification. Faculty
of Science and Engineering, RUG. 2023-07

M.S. Bouwman. Supporting Railway
Standardisation with Formal Verification.
Faculty ofMathematics and Computer Sci-
ence, TU/e. 2023-08

S.A.M. Lathouwers. Exploring Annota-
tions for Deductive Verification. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2023-09

J.H. Stoel. Solving the Bank, Light-
weight Specification and Verification Tech-
niques for Enterprise Software. Faculty
of Mathematics and Computer Science,
TU/e. 2023-10

D

D.M. Groenewegen. WebDSL: Linguistic
Abstractions for Web Programming. Fac-
ulty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2023-11

D.R. do Vale. On Semantical Methods for
Higher-Order Complexity Analysis. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2024-01

M.J.G. Olsthoorn. More Effective Test
Case Generation with Multiple Tribes
of AI. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2024-02

B. van denHeuvel. Correctly Communic-
ating Software: Distributed, Asynchronous,
and Beyond. Faculty of Science and En-
gineering, RUG. 2024-03

H.A. Hiep. New Foundations for Separ-
ation Logic. Faculty of Mathematics and
Natural Sciences, UL. 2024-04

C.E. Brandt. Test Amplification For and
With Developers. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2024-05

J.I. Hejderup. Fine-Grained Analysis
of Software Supply Chains. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2024-06

J. Jacobs. Guarantees by construction. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2024-07

O. Bunte. Cracking OIL: A Formal Per-
spective on an Industrial DSL for Modelling
Control Software. Faculty of Mathematics
and Computer Science, TU/e. 2024-08

R.J.A. Erkens. Automaton-based Tech-
niques for Optimized Term Rewriting. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2024-09

J.J.M. Martens. The Complexity of Bisim-
ilarity by Partition Refinement. Faculty

of Mathematics and Computer Science,
TU/e. 2024-10

L.J. Edixhoven. Expressive Specification
and Verification of Choreographies. Fac-
ulty of Science, OU. 2024-11

J.W.N. Paulus. On the Expressivity of
Typed Concurrent Calculi. Faculty of Sci-
ence and Engineering, RUG. 2024-12

J. Denkers. Domain-Specific Languages
for Digital Printing Systems. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2024-13

L.H. Applis. Tool-Driven Quality Assur-
ance for Functional Programming and Ma-
chine Learning. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2024-14

P. Karkhanis. Driving the Future: Fa-
cilitating C-ITS Service Deployment for
Connected and Smart Roadways. Faculty
of Mathematics and Computer Science,
TU/e. 2024-15

N.W. Cassee. Sentiment in Software En-
gineering. Faculty of Mathematics and
Computer Science, TU/e. 2024-16

H. van Antwerpen. Declarative
Name Binding for Type System Specific-
ations. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2025-01

I.N. Mulder. Proof Automation for Fine-
Grained Concurrent Separation Logic. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2025-02

T.S. Badings. Robust Verification of
Stochastic Systems: Guarantees in the
Presence of Uncertainty. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2025-03

	Introduction
	Stochastic Systems
	Verification
	Uncertainty is Inevitable
	Robustness
	Challenges and Contributions
	Overview of Key Techniques
	Navigating This Thesis
	Overview of Publications

	Foundations
	Preliminaries
	Basic Notation
	Optimization Problems
	Probability Theory
	Probability distributions
	Random variables
	Stochastic processes

	A Primer on Markov Decision Processes
	Markov Decision Processes
	Paths and sets of paths
	Schedulers

	Analyzing MDPs
	Probabilistic computation tree logic
	Measures
	Value iteration for MDPs

	Robust Markov Decision Processes
	Interval MDPs
	Nature
	Robust measures
	Optimal schedulers for RMDPs
	Connection to other models

	Summary

	Discrete-Time Stochastic Systems
	Foundations of DTSSs
	Introduction
	Discrete-Time Stochastic Systems
	Markov policy
	Stochastic kernel

	Reach-Avoid Probability
	Computing satisfaction probabilities
	Extension to PCTL

	Summary

	Probabilistic Simulation Relations
	Introduction
	Policy evaluation
	Optimal control
	Lower bound control

	The DTSS Policy Synthesis Problem
	Approaches to DTSS policy synthesis
	Shortcomings of abstraction-based control
	An overview of our approach

	Probabilistic Simulation Relations
	Relating reach-avoid specifications
	Relating DTSSs and MDPs
	Comparison to other behavioral relations

	Correct-by-Construction Markov Policy Synthesis
	DTSS Relations With Robust MDPs
	Probabilistic alternating simulation relation
	Lower bounding satisfaction probabilities
	Markov policy synthesis with RMDPs

	Summary

	Reach-Avoid Control of Linear DTSSs
	Linear DTSS
	Assumptions
	Problem statement

	MDP Abstraction of Linear DTSS
	Relation induced by the abstract MDP

	Sampling-Based Probability Intervals
	Bounds for the transition probabilities
	*The scenario approach
	*Proof of thm:JAIR:bounds
	Tightness of probability intervals

	Abstraction-Based Control Algorithm
	Interval MDP abstraction
	Solving prob:linearDTSS with high probability

	Exploiting Stability for Smaller Abstractions
	Backward reachable sets
	Constructing smaller abstractions

	Experimental Evaluation
	UAV motion planning
	Spacecraft docking

	Related Work
	Discussion
	Summary

	DTSSs With Uncertain Parameters
	Parameter Uncertainty in DTSSs
	Assumptions
	Problem statement
	Overview of our abstraction technique

	Parameter Robustness in IMDP Abstractions
	Nominal dynamics model
	IMDP abstraction of the nominal model
	PAC probability intervals

	Abstraction Algorithm
	Solving prob:robustDTSS with high probability

	Experimental Evaluation
	Longitudinal drone dynamics
	Building temperature control

	Related Work
	Discussion
	Summary

	Parametric Markov Decision Processes
	Foundations of Parametric MDPs
	Introduction
	Parametric MDPs
	Parameter instantiation

	Verifying Parametric MDPs
	Solution function
	Parameter synthesis

	Challenges
	Summary

	The Scenario Approach for Parametric MDPs
	Introduction
	Motivating Example
	Problem Statement
	Bounding the Satisfaction Probability
	Chance-constrained problem
	Scenario problem
	Sample complexity

	Improving Bounds by Discarding Samples
	Scenario problem with discarded samples
	prob:STTT solved

	Experimental Evaluation
	UAV Motion Planning
	Parameter Synthesis Benchmarks

	Discussion
	Summary

	Sensitivity Analysis for Parametric Markov Chains
	Introduction
	Overview
	Problem Statement
	Parametric robust Markov chains
	Problem statement

	Differentiating Solution Functions for pMCs
	Computing derivatives explicitly
	Computing k highest derivatives

	Differentiating Solution Functions for pRMCs
	Computing derivatives via pMCs
	Computing derivatives explicitly
	Computing k highest derivatives

	Numerical Experiments
	Related Work
	Discussion
	Summary

	Continuous-Time Markov Chains
	Foundations of CTMCs
	Introduction
	Continuous-Time Markov Chains
	Verifying CTMCs
	Continuous stochastic logic
	Measures
	Algorithms

	Parametric Continuous-Time Markov Chains
	Parameter instantiation
	Verifying pCTMCs

	Challenges
	Summary

	CTMCs With Uncertain Rates
	Introduction
	CTMCs With Uncertain Rates
	Measures and solution functions
	Problem statement
	Illustrative example
	Our approach

	Precise Sampling-Based Prediction Regions
	Constructing prediction regions
	Bounding the containment probability
	Algorithm for computing prediction regions

	Imprecise Sampling-Based Prediction Regions
	Prediction regions on imprecise solutions
	*Proof of thm:CAV22:subsetrelation
	Computing the complexity
	Solution refinement scheme

	Batch Verification for CTMCs
	Numerical Experiments
	Converting pCTMCs into upCTMCs
	Applicability
	Scalability
	Comparison to baselines

	Related Work
	Summary

	CTMCs With Imprecisely Timed Observations
	Introduction
	The CTMC Monitoring Problem
	Problem statement
	Our approach

	Conditional Reachability With Imprecise Evidence
	Unfolding the CTMC into an MDP
	Computing conditional probabilities in MDPs
	Computing evidence probability

	Abstraction of Conditioned MDPs
	Abstracting evidence times
	Abstraction refinement

	Bounding the Conditional Reachability
	Numerical Experiments
	Feasibility
	Scalability

	Related Work
	*Proofs
	Proof of thm1:TACAS24:riskonMDP
	Proof of thm:TACAS24:sandwich

	Discussion
	Summary

	Outlook
	Tool Support
	Probabilistic model checkers
	DynAbs
	Scenario Approach for pMDPs
	Differentiation of pRMCs
	SLURF
	Conditional Reachability in CTMCs

	Conclusion and Future Work
	Summary of Contributions
	A Guide to Robust Verification Under Uncertainty
	Limitations, Challenges, and Perspectives
	Combining learning and verification
	Integration with reinforcement learning
	Partial observability
	Exploiting structure in AI
	Continuous-time models with nondeterminism
	Mature tool support

	Final Remarks

	Back Matter
	Bibliography
	Index
	Research Data Management
	About the Author

